J. Mater. Sci. Technol. ›› 2025, Vol. 219: 59-74.DOI: 10.1016/j.jmst.2024.11.002
• Research article • Previous Articles Next Articles
Yizhou Hea,b,1, Qianxi Haoa,b,1, Xue Yangc,*, Jiamin Yuc, Chi Zhanga,b, Ruoyu Lia,b, Qi Wanga,b, Shaorong Lia, Xiaowei Guo*, Serguei K. Lazaroukd
Received:
2023-12-30
Revised:
2024-09-05
Accepted:
2024-11-06
Published:
2024-09-16
Online:
2025-06-05
Contact:
*E-mail addresses:202211050822@std.uestc.edu.cn (Y. He),202221050717@std.uestc.edu.cn (Q. Hao),280055419@qq.com (X. Yang),gxw@uestc.edu.cn (X. Guo)
About author:
1These authors contributed equally to the work.
Yizhou He, Qianxi Hao, Xue Yang, Jiamin Yu, Chi Zhang, Ruoyu Li, Qi Wang, Shaorong Li, Xiaowei Guo, Serguei K. Lazarouk. Triethoxysilane-derived silicon quantum dots: A novel pathway to small size and high crystallinity[J]. J. Mater. Sci. Technol., 2025, 219: 59-74.
[1] M.L. Mastronardi, F. Maier-Flaig, D. Faulkner, E.J. Henderson, C. Kübel, U. Lem-mer, G.A. Ozin, Nano Lett. 12(2012) 337-342 . [2] L.T. Canham, Appl. Phys. Lett. 57(1990) 1046-1048 . [3] Z. Ni, S. Zhou, S. Zhao, W. Peng, D. Yang, X. Pi, Mater. Sci. Eng. R-Rep. 138(2019) 85-117 . [4] B. Delley, E.F. Steigmeier, Phys. Rev. B 47 (1993) 1397-1400 . [5] M.J.De Castro, J.C. Pivin, J. Sol-Gel Sci. Technol. 28(2003) 37-43 . [6] C.M. Hessel, E.J. Henderson, J.G.C.Veinot, Chem. Mater. 18(2006) 6139-6146 . [7] N. Shirahata, T. Hasegawa, Y. Sakka, T. Tsuruoka, Small 6 (2010) 915-921 . [8] J.A. Kelly, E.J. Henderson, J.G.C.Veinot, Chem. Commun. 46(2010) 8704-8718 . [9] M. Dasog, G.B. De los Reyes, L.V. Titova, F.A. Hegmann, J.G.C. Veinot, ACS Nano 8 (2014) 9636-9648 . [10] X. Liu, Y. Zhang, T. Yu, X. Qiao, R. Gresback, X. Pi, D. Yang, Part. Part. Syst. Char. 33(2016) 44-52 . [11] E.J. Henderson, A.J. Shuhendler, P. Prasad, V. Baumann, F. Maier-Flaig, D.O. Faulkner, U. Lemmer, X.Y. Wu, G.A. Ozin, Small 7 (2011) 2507-2516 . [12] S. Chandra, B. Ghosh, G. Beaune, U. Nagarajan, T. Yasui, J. Nakamura, T. Tsu-ruoka, Y. Baba, N. Shirahata, F.M. Winnik, Nanoscale 8 (2016) 9009-9019 . [13] B. Ghosh, Y. Masuda, Y. Wakayama, Y. Imanaka, J. Inoue, K. Hashi, K. Deguchi, H. Yamada, Y. Sakka, S. Ohki, T. Shimizu, N. Shirahata, Adv. Funct. Mater. 24(2014) 7151-7160 . [14] H. Yamada, N. Saitoh, B. Ghosh, Y. Masuda, N. Yoshizawa, N. Shirahata, J. Phys. Chem. C 124 (2020) 23333-23342 . [15] I.T. Cheong, J. Mock, M. Kallergi, E. Groß, A. Meldrum, B. Rieger, M. Becherer, J.G.C.Veinot, Adv. Opt. Mater. 11(2023) 2201834 . [16] J. Watanabe, H. Yamada, H.T. Sun, T. Moronaga, Y. Ishii, N. Shirahata, Appl ACS Nano Mater. 4(2021) 11651-11660 . [17] H. Yamada, J. Watanabe, K. Nemoto, H.T. Sun, N. Shirahata, Nanomaterials 12 (2022) 4314 . [18] Z. Deng, X.D. Pi, J.J. Zhao, D. Yang, J. Mater. Sci.Technol. 29(2013) 221-224 . [19] F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, S. Brovelli, Nat. Photon. 11(2017) 177-185 . [20] X. Pi, Q. Li, D. Li, D. Yang, Sol. Energy Mater. Sol. Cells 95 (2011) 2941-2945 . [21] K. Saitow, T. Yamamura, J. Phys. Chem. C 113 (2009) 8465-8470 . [22] S. Wei, T. Yamamura, D. Kajiya, K. Saitow, J. Phys. Chem. C 116 (2012) 3928-3934 . [23] Y. Xin, K. Nishio, K. Saitow, Appl. Phys. Lett. 106(2015) 201102 . [24] V. Svrcek, D. Mariotti, U. Cvelbar, G. FilipiČ, M. Lozac’h, C. McDonald, T. Taya-gaki, K. Matsubara, J. Phys. Chem. C 120 (2016) 18822-18830 . [25] Y. Xin, T. Kitasako, M. Maeda, K. Saitow, Chem. Phys. Lett. 674(2017) 90-97 . [26] A .V. Kabashin, A . Singh, M.T. Swihart, I.N. Zavestovskaya, P.N. Prasad, ACS Nano 13 (2019) 9841-9867 . [27] L. Mangolini, E. Thimsen, U. Kortshagen, Nano Lett. 5(2005) 655-659 . [28] U.R. Kortshagen, R.M. Sankaran, R.N. Pereira, S.L. Girshick, J.J. Wu, E.S. Aydil, Chem. Rev. 116(2016) 11061-11127 . [29] D. Jurbergs, E. Rogojina, L. Mangolini, U. Kortshagen, Appl. Phys. Lett. 88(2006) 233116 . [30] A.G. Cullis, L.T. Canham, Nature 353 (1991) 335-338 . [31] Y. Kanemitsu, Phys. Rep. 263(1995) 1-91 . [32] S. Lazarouk, P. Jaguiro, S. Katsouba, G. Maiello, S. La Monica, G. Masini, E. Proverbio, A. Ferrari, Thin Solid Films 297 (1997) 97-101 . [33] J.R. Heath, Science 258 (1992) 1131-1133 . [34] J. Zou, R.K. Baldwin, K.A. Pettigrew, S.M. Kauzlarich, Nano Lett. 4(2004) 1181-1186 . [35] Q. Li, Y. He, J. Chang, L. Wang, H. Chen, Y.W. Tan, H. Wang, Z. Shao, J. Am. Chem.Soc. 135(2013) 14924-14927 . [36] M. Rosso-Vasic, E. Spruijt, B. van Lagen, L. De Cola, H. Zuilhof, Small 4 (2008) 1835-1841 . [37] C.M. Hessel, D. Reid, M.G. Panthani, M.R. Rasch, B.W. Goodfellow, J. Wei, H. Fu-jii, V.Akhavan, B.A. Korgel, Chem. Mater. 24(2012) 397-401 . [38] J.R.Rodríguez Núñez, J.A. Kelly, E.J. Henderson, J.G.C. Veinot, Chem. Mater. 24(2012) 346-352 . [39] Y. Yu, C.E. Rowland, R.D. Schaller, B.A. Korgel, Langmuir 31 (2015) 6 886-6 893 . [40] M.A. Islam, M.H. Mobarok, R. Sinelnikov, T.K. Purkait, J.G.C. Veinot, Langmuir 33 (2017) 8766-8773 . [41] Y. Yu, G. Fan, A. Fermi, R. Mazzaro, V. Morandi, P. Ceroni, D.M. Smilgies, B.A. Korgel, J. Phys. Chem. C 121 (2017) 23240-23248 . [42] R.J. Clark, M. Aghajamali, C.M. Gonzalez, L. Hadidi, M.A. Islam, M. Javadi, M.H. Mobarok, T.K. Purkait, C.J.T.Robidillo, R. Sinelnikov, A.N. Thiessen, J. Washington, H. Yu, J.G.C. Veinot, Chem. Mater. 29(2017) 80-89 . [43] I. Sychugov, A. Fucikova, F. Pevere, Z. Yang, J.G.C.Veinot, J. Linnros, ACS Photon. 1(2014) 998-1005 . [44] J. Zhou, J. Huang, H. Chen, A. Samanta, J. Linnros, Z. Yang, I. Sychugov, J. Phys. Chem.Lett. 12(2021) 8909-8916 . [45] A. Marinins, R. Zandi Shafagh, W. van der Wijngaart, T. Haraldsson, J. Lin-nros, J.G.C. Veinot, S. Popov, I. Sychugov, ACS Appl. Mater. Interfaces 9 (2017) 30267-30272 . [46] S. Terada, Y. Xin, K. Saitow, Chem. Mater. 32(2020) 8382-8392 . [47] T. Ono, Y. Xu, T. Sakata, K. Saitow, ACS Appl. Mater. Interfaces 14 (2022) 1373-1388 . [48] M. Pauthe, E. Bernstein, J. Dumas, L. Saviot, A. Pradel, M. Ribes, J. Mater. Chem. 9(1999) 187-191 . [49] E.J. Henderson, J.A. Kelly, J.G.C.Veinot, Chem. Mater. 21(2009) 5426-5434 . [50] G.D. Sorarù, S. Modena, P. Bettotti, G. Das, G. Mariotto, L. Pavesi, Appl. Phys. Lett. 83(2003) 749-751 . [51] G. Das, L. Ferraioli, P. Bettotti, F. De Angelis, G. Mariotto, L. Pavesi, E. Di Fab-rizio, G.D. Soraru, Thin Solid Films 516 (2008) 6 804-6 807 . [52] Y. Xin, R. Wakimoto, K. Saitow, Chem. Mater. 46(2017) 699-702 . [53] N. Shirahata, J. Nakamura, J. Inoue, B. Ghosh, K. Nemoto, Y. Nemoto, M. Takeguchi, Y. Masuda, M. Tanaka, G.A. Ozin, Nano Lett. 20(2020) 1491-1498 . [54] M. Miyano, S. Endo, H. Takenouchi, S. Nakamura, Y. Iwabuti, O. Shiino, T. Nakanishi, Y. Hasegawa, J. Phys. Chem. C 118 (2014) 19778-19784 . [55] W.J.I. DeBenedetti, S.K. Chiu, C.M. Radlinger, R.J. Ellison, B.A. Manhat, J.Z. Zhang, J. Shi, A.M. Goforth, J. Phys. Chem. C 119 (2015) 9595- 9608 . [56] B. Ghosh, T. Hamaoka, Y. Nemoto, M. Takeguchi, N. Shirahata, J. Phys. Chem. C 122 (2018) 6422-6430 . [57] M.L. Mastronardi, F. Hennrich, E.J. Henderson, F. Maier-Flaig, C. Blum, J. Re-ichenbach, U.Lemmer, C. Kübel, D. Wang, M.M. Kappes, G.A. Ozin, J. Am. Chem. Soc. 133(2011) 11928-11931 . [58] K. Fujimoto, T. Hayakawa, Y. Xu, N. Jingu, K. Saitow, ACS Sustainable Chem. Eng. 10(2022) 14451-14463 . [59] H. Ueda, K. Saitow, ACS Appl. Mater. Interfaces 16 (2024) 985-997 . [60] K. Saitow, Bull. Chem. Soc. Jpn. 97 (2024) uoad002 . [61] Y. Xu, Y. Xin, K. Kato, T. Shirai, J Mater. Chem. C 10 (2022) 12588-12601 . [62] N. Jingu, K. Sumida, T. Hayakawa, T. Ono, K. Saitow, Chem. Mater. 36(2024) 5077-5091 . [63] S. Hernández, J. López-Vidrier, L. López-Conesa, D. Hiller, S. Gutsch, J. Ibáñez, S. Estradé, F. Peiró, M. Zacharias, B. Garrido, J. Appl. Phys. 115(2014) 203504 . [64] E. Bustarret, M.A. Hachicha, M. Brunel, Appl. Phys. Lett. 52(1988) 1675-1677 . [65] T. Mizutani, H. Ohta, T. Ueda, T. Kashiwagi, T. Fukuda, T. Shiobara, K. Saitow, ACS Sustainable Chem. Eng. 11(2023) 11769-11780 . [66] A.N. Thiessen, L. Zhang, A.O. Oliynyk, H. Yu, K.M.O’Connor, A.Meldrum, J.G.C. Veinot, Chem. Mater. 32(2020) 6 838-6 846 . [67] I.T. Cheong, L. Yang Szepesvari, C. Ni, C. Butler, K.M. O’Connor, R. Hooper, A. Meldrum, J.G.C. Veinot, Nanoscale 16 (2024) 592-603 . [68] G. Viera, S. Huet, L. Boufendi, J. Appl. Phys. 90(2001) 4175-4183 . [69] T.C. Paul, J. Podder, Appl. Phys. A 125 (2019) 818 . [70] A. Khorsand Zak, W.H. Abd.Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13(2011) 251-256 . [71] Z. Ni, X. Pi, M. Ali, S. Zhou, T. Nozaki, D. Yang, J. Phys.D-Appl. Phys. 48(2015) 314006 . [72] T. van Buuren, L.N. Dinh, L.L. Chase, W.J. Siekhaus, L.J. Terminello, Phys. Rev. Lett. 80(1998) 3803-3806 . [73] J.W. Luo, S.S. Li, I. Sychugov, F. Pevere, J. Linnros, A. Zunger, Nat. Nanotechnol-ogy 12 (2017) 930-932 . [74] W. de Boer, D.Timmerman, I. Yassievich, A. Capretti, T. Gregorkiewicz, Nat. Nanotechnol. 12(2017) 932-933 . [75] L. Canham, Faraday Discuss. 222(2020) 10-81 . [76] C.S. Yang, R.A. Bley, S.M. Kauzlarich, H.W.H.Lee, G.R. Delgado, J. Am. Chem. Soc. 121(1999) 5191-5195 . [77] K.Y. Cheng, R. Anthony, U.R. Kortshagen, R.J. Holmes, Nano Lett. 11(2011) 1952-1956 . [78] S. Ma, T. Yue, X. Xiao, H. Cheng, D. Zhao, J. Lumin. 201(2018) 77-84 . [79] D.P. Puzzo, E.J. Henderson, M.G. Helander, Z. Wang, G.A. Ozin, Z. Lu, Nano Lett. 11(2011) 1585-1590 . [80] Q. He, K. Wang, D. Li, D. Yang, X. Pi, Adv. Opt. Mater. 12(2024) 2302422 . [81] J.C. de Mello, H.F. Wittmann, R.H. Friend, Adv. Mater. 9(1997) 230-232 . [82] J. Zhou, F. Ma, K. Chen, W. Zhao, R. Yang, C. Qiao, H. Shen, W.S. Su, M. Lu, Y. Zheng, R. Zhang, L. Chen, S. Wang, Nanoscale Adv. 5(2023) 3896-3904 . [83] H. Sugimoto, M. Yamamura, R. Fujii, M. Fujii, Nano Lett. 18(2018) 7282-7288 . [84] H. Yamada, N. Shirahata, Micromachines 10 (2019) 318 . [85] I.N.G. Özbilgin, B. Ghosh, H. Yamada, N. Shirahata, J. Phys. Chem. C 125 (2021) 3421-3431 . |
[1] | Qi Wang, Sirous Khabbaz Abkenar, Matilde Cirignano, Hailong Yu, Wenzhi Wu, Giorgio Divitini. Temperature-dependent photoluminescent behavior of millimeter-scale Cs4 PbBr6 /CsPbBr3 bulk crystals and their application to white light-emitting diodes [J]. J. Mater. Sci. Technol., 2024, 179(0): 57-65. |
[2] | H.X. Lu, H. Liu, Z.Z. Fu, Y.Y. Chen, H.Q. Dai, Z. Hu, W.L. Zhang, R.Q. Guo. Rational design of AgGaS/ZnS/ZnS quantum dots with a near-unity photoluminescence quantum yield via double shelling scheme [J]. J. Mater. Sci. Technol., 2024, 169(0): 235-242. |
[3] | Qiancheng Liu, Feng Zhao, Xulin Yang, Jie Zhu, Sudong Yang, Lin Chen, Peng Zhao, Qingyuan Wang, Qian Zhang. Constructing interlaced network structure by grain boundary corrosion methods on CrCoNiFe alloy for high-performance oxygen evolution reaction and urea oxidation reaction [J]. J. Mater. Sci. Technol., 2024, 203(0): 97-107. |
[4] | Congyuan Wang, Jingjing Jiao, Jiaxuan Dai, Lu Yu, Qibing Chen, Xiangyu Xie, Xiaoping Yang, Gang Sui. A functional hydrogel electrolyte doped with graphene oxide enabling ultra-long lifespan zinc metal batteries by inducing oriented deposition [J]. J. Mater. Sci. Technol., 2024, 191(0): 209-219. |
[5] | Qiuqi Zhang, Xiao You, Li Tian, Mengmeng Wang, Xiangyu Zhang, Ying Shi, Jinshan Yang, Shaoming Dong. Fabrication and efficient electromagnetic waves attenuation of three-dimensional porous reduced graphene oxide/boron nitride/silicon carbide hierarchical structures [J]. J. Mater. Sci. Technol., 2023, 155(0): 192-201. |
[6] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[7] | Xinzhi Wang, Yao Wang, Xinbo Zhang, Wei Ding, Longlong Li, Linjun Huang, Laurence A. Belfiore, Jianguo Tang. Highly sensitive color fine-tuning of diblock copolymeric nano-aggregates with tri-metallic cations, Eu(III), Tb(III), and Zn(II), for flexible photoluminescence films (FPFs) [J]. J. Mater. Sci. Technol., 2021, 65(0): 72-81. |
[8] | Yuriy G. Denisenko, Victor V. Atuchin, Maxim S. Molokeev, Naizheng Wang, Xingxing Jiang, Aleksandr S. Aleksandrovsky, Alexander S. Krylov, Aleksandr S. Oreshonkov, Alexander E. Sedykh, Svetlana S. Volkova, Zheshuai Lin, Oleg V. Andreev, Klaus Müller-Buschbaum. Negative thermal expansion in one-dimension of a new double sulfate AgHo(SO4)2 with isolated SO4 tetrahedra [J]. J. Mater. Sci. Technol., 2021, 76(0): 111-121. |
[9] | Ju Tang, Jin Zhang, Weizuo Zhang, Yiming Xiao, Yanli Shi, Fanquan Kong, Wen Xu. Modulation of red-light emission from carbon quantum dots in acid-based environment and the detection of chromium (Ⅲ) ions [J]. J. Mater. Sci. Technol., 2021, 83(0): 58-65. |
[10] | Hailong Yuan, Zhifeng Huang, Jianwen Zhang, Ziqian Yin, Xiangyu Lu, Fei Chen, Qiang Shen. Enhancing thermal stability and photoluminescence of red-emitting Sr2Si5N8:Eu phosphors via boron doping [J]. J. Mater. Sci. Technol., 2021, 94(0): 130-135. |
[11] | Han Wu, Jingdong Guo, De’an Yang. Facile autoreduction synthesis of core-shell Bi-Bi2O3/CNT with 3-dimensional neural network structure for high-rate performance supercapacitor [J]. J. Mater. Sci. Technol., 2020, 47(0): 169-176. |
[12] | Mi Gyeong Kim, Wan-Kuen Jo. Visible-light-activated N-doped CQDs/g-C3N4/Bi2WO6 nanocomposites with different component arrangements for the promoted degradation of hazardous vapors [J]. J. Mater. Sci. Technol., 2020, 40(0): 168-175. |
[13] | Shijie Xu, Ying Huang, Zhicheng Su, Rongxin Wang, Jianrong Dong, Deliang Zhu. Storage and transfer of optical excitation energy in GaInP epilayer: Photoluminescence signatures [J]. J. Mater. Sci. Technol., 2019, 35(7): 1364-1367. |
[14] | Shang Zhou, Hua Wang, Li Zhong, Junqian Zhao, Liang Li, Guanghai Li. Synthesis and photoluminescence of Ca1-xTiO3:xEu3+ nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(6): 949-954. |
[15] | Jun Cheng, Shengyu Zhu, Yuan Yu, Jun Yang, Weimin Liu. Microstructure, mechanical and tribological properties of TiAl-based composites reinforced with high volume fraction of nearly network Ti2AlC particulates [J]. J. Mater. Sci. Technol., 2018, 34(4): 670-678. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||