J. Mater. Sci. Technol. ›› 2024, Vol. 184: 101-110.DOI: 10.1016/j.jmst.2023.09.042
• Research article • Previous Articles Next Articles
Kai Zhao, Fang Ye*, Laifei Cheng*, Jinsong Yang
Received:
2023-08-08
Revised:
2023-09-11
Accepted:
2023-09-11
Published:
2024-06-10
Online:
2023-11-22
Contact:
*E-mail addresses: Kai Zhao, Fang Ye, Laifei Cheng, Jinsong Yang. ZrC-SiC closed-cell ceramics with low thermal conductivity: Exploiting unique spherical closed-cell structure through tape casting and CVI techniques[J]. J. Mater. Sci. Technol., 2024, 184: 101-110.
[1] N.P. Padture, Nat. Mater. 15(2016) 804-809 . [2] A. Paul, D.D. Jayaseelan, S. Venugopal, E. Zapata-Solvas, J. Binner, B. Vaid-hyanathan, A.Heaton, P. Brown, W.E. Lee, Am. Ceram. Soc. Bull. 91(2012) 22-28 . [3] K. Zhao, F. Ye, L.F. Cheng, J. Zhou, Y.C. Wei, X.F. Cui, ACS Appl. Mater. Interfaces 13 (2021) 37388-37397 . [4] E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz, I. Talmy, Electrochem. Soc. Interface 16 (2007) 30 . [5] G.J. Zhang, D.W. Ni, J. Zou, H.T. Liu, W.W. Wu, J.X. Liu, T.S. Suzuki, Y. Sakka, J. Eur. Ceram.Soc. 38(2018) 371-389 . [6] H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.M. Lei, J. Zhang, Y.C. Zhou, J. Mater. Sci.Technol. 35(2019) 1700-1705 . [7] H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, J. Mater. Sci.Technol. 35(2019) 2778-2784 . [8] X.X. Jin, L.M. Dong, Q. Li, H. Tang, N. Li, Q. Qu, Ceram. Int. 42(2016) 13309-13313 . [9] X.X. Jin, L.M. Dong, H.Y. Xu, L.Z. Liu, N. Li, X.H. Zhang, J.C. Han, Ceram. Int. 42(2016) 9051-9057 . [10] X.X. Jin, X.H. Zhang, J.C. Han, P. Hu, R.J. He, Mater. Sci. Eng. A 588 (2013) 175-180 . [11] E. Sani, L. Mercatelli, J.L. Sans, L. Silvestroni, D. Sciti, Materials 36 (2013) 163-168 (Basel) . [12] C.R. Rambo, J. Cao, O. Rusina, H. Sieber, Carbon N Y 43 (2005) 1174-1183 . [13] V. Medri, M. Mazzocchi, A. Bellosi, Int. J Appl. Ceram. Tec. 8(2011) 815-823 . [14] J.M. Jiang, S. Wang, W. Li, Z.H. Chen, J. Alloy. Compd. 695(2017) 2295-2300 . [15] J.C. Du, X.H. Zhang, C.Q. Hong, W.B. Han, Ceram. Int. 39(2013) 953-957 . [16] E. Landi, D. Sciti, C. Melandri, V. Medri, J. Eur. Ceram.Soc. 33(2013) 1599-1607 . [17] S. Wang, H. Chen, Y. Li, H. Ma, X. Liu, S. Zhang, Q. Jia, J. Eur. Ceram.Soc. 43(2023) 3905-3916 . [18] S.J. Wang, Y.F. Yang, J.Y. Cui, X.H. Liu, S.W. Zhang, Q.L. Jia, Ceram. Int. 48(2022) 27051-27063 . [19] N.N. Yan, Q.G. Fu, Y.Y. Zhang, K. Li, W. Xie, J.P. Zhang, L. Zhuang, X.H. Shi, Ce-ram. Int. 46(2020) 19609-19616 . [20] Q. Yang, C. Li, H. Ouyang, R. Gao, T. Shen, J. Huang, Materials 16 (2023) 2495 (Basel) . [21] S.J. Wang, Y.C. Yin, L.G. Chen, X.H. Liu, Q.L. Jia, S.W. Zhang, Ceram. Int. 47(2021) 33978-33987 . [22] H.B. Wu, J. Yin, Y.S. Li, Y.Z. Zhu, X.J. Liu, S.H. Lee, Y.Q. Wu, Z.G. Huang, Ceram. Int. 42(2016) 1573-1580 . [23] F. Li, X. Huang, J. Eur. Ceram.Soc. 38(2018) 1103-1111 . [24] F. Li, X.G. Wang, X. Huang, J.X. Liu, W.C. Bao, G.J. Zhang, H.Z. Wang, J. Eur. Ceram.Soc. 38(2018) 4 806-4 813 . [25] W. Huo, X. Zhang, E. Tervoort, S. Gantenbein, J. Yang, A.R. Studart, Adv. Funct. Mater. 30(2020) 2003550 . [26] Z.Q. Sun, C. Lu, J.M. Fan, F.L. Yuan, J. Alloy. Compd. 662(2016) 157-164 . [27] E. Ozcivici, R.P. Singh, J. Am. Ceram.Soc. 88(2005) 3338-3345 . [28] M. Han, X. Yin, L. Cheng, S. Ren, Z. Li, Mater. Des. 113(2017) 384-390 . [29] F. Hu, S. Wu, Y. Sun, Adv. Mater. 31(2019) 1801001 . [30] I. Barin, in: Thermochemical Data of Pure Substances, 1st ed., Wiley, Hoboken, 1995, p. 1503. 1860 . [31] X.Y. Lv, F. Ye, L.F. Cheng, L.T. Zhang, Compos. Pt. A-Appl.Sci. Manuf. 158(2022) 106974 . [32] H. Liu, M.Y. Hu, J.H. Jiao, Z.Y. Li, X.H. Wu, Int. J. Heat. Mass. Tran. 161(2020) 120298 . [33] H.S. Yang, G.R. Bai, L.J. Thompson, J.A. Eastman, Acta. Mater. 50(2002) 2309-2317 . [34] S. Shin, Q. Wang, J. Luo, R. Chen, Adv. Funct. Mater. 30(2020) 1904815 . [35] W.S. Williams, J. Am. Ceram.Soc. 49(1966) 156-159 . [36] R.E. Taylor, J. Morreale, J. Am. Ceram.Soc. 47(1964) 69-73 . [37] R. Mahajan, M. Barkeshli, S.A. Hartnoll, Phys. Rev. B 88 (2013) 125107 . [38] K. Schönfeld, M. Trache, H.P. Martin, Materialwiss. Werkst. 52(2021) 1338-1345 . [39] Y.W. Kim, S. Kultayeva, J. Sedláˇcek, O. Hanzel, P. Tatarko, Z. Lenˇcéš, P. Šajgalík, J. Eur. Ceram.Soc. 40(2020) 234-240 . [40] P.L. Kapitza, J. Phys. 4(1941) 181 . [41] G.L. Pollack, Rev. Mod. Phys. 41(1969) 48-81 . [42] Y. Liu, W. Li, Y. Cui, Y. Yang, J. Yang, Sci. Eng. Compos. Mater. 29(2022) 500-507 . [43] J. He, H. Zhang, Y. Zhang, Y. Zhao, X. Wang, Phys. Status. Solidi. A 211 (2014) 587-594 . [44] M. Khanzadeh, G. Alahyarizadeh, Ceram. Int. 47 (2021) 9990-10 0 05 . [45] S. Guo, Y. Kagawa, T. Nishimura, H. Tanaka, Ceram. Int. 34(2008) 1811-1817 . [46] P. Šimonová, W. Pabst, J. Eur. Ceram.Soc. 43(2023) 1597-1604 . [47] C.C. Jin, K. Xiong, L. Guo, Z.P. Sun, W. Li, S.M. Zhang, Y.W. Wang, Y. Mao, Results Phys. 35(2022) 105341 . [48] Z. Jia, Z. Wang, D. Hwang, L.F. Wang, ACS Appl. Energy Mater. 1(2018) 1146-1157 . [49] J.K. Carson, S.J. Lovatt, D.J. Tanner, A.C. Cleland, Int. J. Heat. Mass. Tran. 48(2005) 2150-2158 . [50] L. Gong, Y. Wang, X. Cheng, R. Zhang, H. Zhang, Int. J. Heat. Mass. Tran. 67(2013) 253-259 . [51] A .M. Abyzov, A .V. Goryunov, F.M. Shakhov, Int. J. Heat. Mass. Tran. 67(2013) 752-767 . [52] Y. Han, C.W. Li, C. Bian, S.B. Li, C.A. Wang, J. Eur. Ceram.Soc. 33(2013) 2573-2578 . [53] F. Li, Z. Kang, X. Huang, X.G. Wang, G.J. Zhang, J. Eur. Ceram.Soc. 34(2014) 3513-3520 . [54] W.L. Huo, X.Y. Zhang, Y.G. Chen, Y.J. Lu, W.T. Liu, X.Q. Xi, Y.L. Wang, J. Xu, J.L. Yang, J. Am. Ceram.Soc. 99(2016) 3512-3515 . [55] S. Wang, M. Liu, X. Liu, Q. Jia, S. Zhang, J. Eur. Ceram.Soc. 42(2022) 4 465-4 471 . [56] Z. Wu, X.P. Liang, Z.J. Shao, H.K. Chen, J.N. Li, J.Y. Wang, Materialia 18 (2021) 101158 . [57] Z. Shao, Z. Wu, L. Sun, X. Liang, Z. Luo, H. Chen, J. Li, J. Wang, J. Mater. Sci.Technol. 119(2022) 190-199 . [58] H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, J. Mater. Sci.Technol. 35(2019) 2404-2408 . [59] L. Han, Y. Chen, H.J. Zhang, G.Q. Li, Q.L. Jia, S.W. Zhang, J. Am. Ceram.Soc. 106(2023) 841-847 . |
[1] | Huijie Wang, Zhiwei Chen, Dong Su. Lightweight and large-scale rGO reinforced SiBCN aerogels with hierarchical cellular structures exposed to high-temperature environments [J]. J. Mater. Sci. Technol., 2024, 179(0): 145-154. |
[2] | Yiqian Guo, Lei Guo, Keyi Liu, Shiyi Qiu, Hongbo Guo, Huibin Xu. Mechanical properties and simulated thermal conductivity of biomimetic structured PS-PVD (Gd0.9Yb0.1)2Zr2O7 thermal barrier coatings [J]. J. Mater. Sci. Technol., 2024, 182(0): 33-40. |
[3] | Zhuoqing Zhang, Jinghan Li, Lei Cao, Yu Shi, Huajie Yang, Rui Yang, Fan Xie, Xing Zhang. Biomimetic porous silicon oxycarbide ceramics with improved specific strength and efficient thermal insulation [J]. J. Mater. Sci. Technol., 2023, 168(0): 185-193. |
[4] | Xue-Lian Chen, Fu-Rong Zeng, Wen-Xiong Li, Lin Zhang, Cong Deng, Yi Tan, Ming-Jun Chen, Sheng-Chao Huang, Bo-Wen Liu, Yu-Zhong Wang, Hai-Bo Zhao. Durable flame-retardant, smoke-suppressant, and thermal-insulating biomass polyurethane foam enabled by a green bio-based system [J]. J. Mater. Sci. Technol., 2023, 162(0): 179-188. |
[5] | Li Geng, Su Cheng, Guanghai Liu, Qiangang Fu, Hejun Li. Laser ablation mechanism of ZrC-SiC-MoSi2 ternary ceramic modified C/C [J]. J. Mater. Sci. Technol., 2023, 149(0): 214-224. |
[6] | Ning Zhou, Baosheng Xu, Zhiliang Zhou, Lijie Qu, Yiguang Wang, Wenbo Han, Daining Fang. Lightweight quasi-layered elastic fibrous porous ceramics with high compressive stress and low thermal conductivity [J]. J. Mater. Sci. Technol., 2023, 143(0): 207-215. |
[7] | Yeye Liu, Leilei Zhang, Ruonan Zhang, Siqi Shao, Lina Sun, Xinyi Wan, Tiantian Wang. Thermal insulating and fire-retardant Si3N4 nanowire membranes resistant to high temperatures up to 1300 °C [J]. J. Mater. Sci. Technol., 2023, 155(0): 82-88. |
[8] | Dou Hu, Qiangang Fu, Lei Zhou, Xiaoxuan Li, Bing Liu. Effects of air plasma flame on the ZrB2-based UHTC coatings: Microstructure, phase evolution and ablation resistance [J]. J. Mater. Sci. Technol., 2023, 158(0): 194-206. |
[9] | Chenglong Hu, Rida Zhao, Sajjad Ali, Yuanhong Wang, Shengyang Pang, Jian Li, Sufang Tang. Deposition kinetics and mechanism of pyrocarbon for electromagnetic-coupling chemical vapor infiltration process [J]. J. Mater. Sci. Technol., 2022, 101(0): 118-127. |
[10] | Zhuojie Shao, Zhen Wu, Luchao Sun, Xianpeng Liang, Zhaoping Luo, Haikun Chen, Junning Li, Jingyang Wang. High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5)C with controlled microstructure and outstanding properties [J]. J. Mater. Sci. Technol., 2022, 119(0): 190-199. |
[11] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Grain boundary segregation induced strong UHTCs at elevated temperatures: A universal mechanism from conventional UHTCs to high entropy UHTCs [J]. J. Mater. Sci. Technol., 2022, 123(0): 26-33. |
[12] | Jing Tian, Yi Yang, Tiantian Xue, Guojie Chao, Wei Fan, Tianxi Liu. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy [J]. J. Mater. Sci. Technol., 2022, 105(0): 194-202. |
[13] | Jiahui Chen, Dainan Zhang, Song He, Gengpei Xia, Xiaoyi Wang, Quanjun Xiang, Tianlong Wen, Zhiyong Zhong, Yulong Liao. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification [J]. J. Mater. Sci. Technol., 2021, 66(0): 157-162. |
[14] | Mengmeng Wang, Jinshan Yang, Xiao You, Chunjing Liao, Jingyi Yan, Jing Ruan, Shaoming Dong. Nanoinfiltration behavior of carbon nanotube based nanocomposites with enhanced mechanical and electrical properties [J]. J. Mater. Sci. Technol., 2021, 71(0): 23-30. |
[15] | Lei Su, Min Niu, De Lu, Zhixin Cai, Mingzhu Li, Hongjie Wang. A review on the emerging resilient and multifunctional ceramic aerogels [J]. J. Mater. Sci. Technol., 2021, 75(0): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||