J. Mater. Sci. Technol. ›› 2023, Vol. 168: 239-249.DOI: 10.1016/j.jmst.2023.05.055
• Research Article • Previous Articles Next Articles
Fawei Tang, Chao Hou*, Hao Lu, Zhi Zhao, Xiaoyan Song*
Received:
2023-03-11
Revised:
2023-05-23
Accepted:
2023-05-23
Published:
2024-01-01
Online:
2023-12-25
Contact:
*E-mail addresses: houchao@bjut.edu.cn (C. Hou), xysong@bjut.edu.cn (X. Song)
Fawei Tang, Chao Hou, Hao Lu, Zhi Zhao, Xiaoyan Song. Grain-boundary segregation and grain growth in nanocrystalline substitutional solid solution alloys[J]. J. Mater. Sci. Technol., 2023, 168: 239-249.
[1] Biswas, D.J. Siegel, D.N. Seidman, Phys. Rev.Lett. 105(2010) 076102. [2] G. Clark, R.O. Ritchie, J.F. Knott, Nature 239 (1972) 104-106. [3] P. Lejček, M. Vsianska, M. Sob, J. Mater. Res. 33(2018) 2647-2660. [4] Feng, T. Yokoi, A. Kumamoto, M. Yoshiya, Y. Ikuhara, N. Shibata, Nat.Com-mun. 7(2016) 11079. [5] L. Huber, R. Hadian, B. Grabowski, J. Neugebauer, NPJ Comput. Mater. 4(2018) 1-8. [6] F. Abdeljawad, P. Lu, N. Argibay, B.G. Clark, B.L. Boyce, S.M. Foiles, Acta Mater. 126(2017) 528-539. [7] A.J. Ardell, P. Bellon, Curr. Opin. Solid State Mater.Sci. 20(2016) 115-139. [8] D.A. Aksyonov, A.G. Lipnitskii, Comput. Mater. Sci. 137(2017) 266-272. [9] Raabe, M. Herbig, S. Sandlobes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.P. Choi, Curr.Opin. Solid State Mater. Sci. 18(2014) 253-261. [10] M. Herbig, D. Raabe, Y. Li, P. Choi, S. Zaefferer, S. Goto, Phys. Rev. Lett. 112(2014) 126103. [11] M.A. Gibson, C.A. Schuh, Acta Mater. 95(2015) 145-155. [12] S.V. Bobylev, N.A. Enikeev, A.G. Sheinerman, R.Z. Valiev, Int. J. Plast. 123(2019) 133-144. [13] T. Hiraga, I.M. Anderson, D.L. Kohlstedt, Nature 427 (2004) 699-703. [14] M.S. Titus, R.K. Rhein, P.B. Wells, P.C. Dodge, G.B. Viswanathan, M.J. Mills, A.V. Ven, T.M. Pollock, Sci. Adv. 2(2016) e1601796. [15] C.C. Du, S.B. Jin, Y. Fang, J. Li, S.Y. Hu, T.T. Yang, Y. Zhang, J.Y. Huang, G. Sha, Y.G. Wang, Z.X. Shang, X.H. Zhang, B.R. Sun, S.W. Xin, T.D. Shen, Nat. Commun. 9(2018) 5389. [16] L.K. Huang, W.T. Lin, B. Lin, F. Liu, Acta Mater. 118(2016) 306-316. [17] A. Devaraj, W. Wang, R. Vemuri, L. Kovarik, Acta Mater. 165(2019) 698-708. [18] T. Chookajorn, H.A. Murdoch, C.A. Schuh, Science 337 (2012) 951-954. [19] X.C. Cai, J. Song, T.T. Yang, Q.M. Peng, J.Y. Huang, T.D. Shen, Mater. Lett. 210(2018) 121-123. [20] M.N. Polyakov, T. Chookajorn, M. Mecklenburg, C.A. Schuh, A.M. Hodge, Acta Mater. 108(2016) 8-16. [21] L.R. Xiao, X.F. Chen, Y. Cao, H. Zhou, X.L. Ma, D.D. Yin, B. Ye, X.D. Han, Y.T. Zhu, Scr. Mater. 177(2020) 69-73. [22] D. Amram, C.A. Schuh, Phys. Rev. Lett. 121(2018) 145503. [23] W. Xing, A.R. Kalidindi, D. Amram, C.A. Schuh, Acta Mater. 161(2018) 285-294. [24] X. Zhao, H. Chen, N. Wilson, Q. Liu, J.F. Nie, Nat. Commun. 10(2019) 3243. [25] A. Gupta, X. Zhou, G.B. Thompson, G.J. Tucker, Acta Mater. 190(2020) 113-123. [26] P. Lejček, S. Hofmann, Acta Mater. 170(2019) 253-267. [27] S.B. Kadambi, F. Abdeljawad, S. Patala, Comput. Mater. Sci. 175(2020) 109533. [28] N. Kaur, C. Deng, O.A. Ojo, Comput. Mater. Sci. 179(2020) 109685. [29] D. McLean, Grain Boundaries in Metals, Clarendon Press, Oxford, 1957. [30] T. Kraus, S.M. Eich, Acta Mater. 187(2020) 73-83. [31] J. Weissmüller, Nanostruct. Mater. 3(1993) 261-272. [32] K. Ishida, J. Alloy. Compd. 235(1996) 244-249. [33] A.J. Detor, C.A. Schuh, Acta Mater. 55(2007) 4221-4232. [34] M. Saber, H. Kotan, C.C. Koch, R. Scattergood, J. Appl. Phys. 113(2013) 063515. [35] J.R. Trelewicz, C.A. Schuh, Phys. Rev. 79(2009) 094112. [36] M. Saber, H. Kotan, C.C. Koch, R. Scattergood, J. Appl. Phys. 114(2013) 103510. [37] H.A. Murdoch, C.A. Schuh, Acta Mater. 61(2013) 2121-2132. [38] F.W. Tang, X.Y. Song, H.B. Wang, X.M. Liu, Z.R. Nie, Phys. Chem. Chem. Phys. 19(2017) 4307-4316. [39] F.W. Tang, X.M. Liu, H.B. Wang, C. Hou, H. Lu, Z.N. Nie, X.Y. Song, Nanoscale 11 (2019) 1813-1826. [40] M. Wagih, C.A. Schuh, Acta Mater. 181(2019) 228-237. [41] W.W. Xu, X.Y. Song, N.D. Lu, M. Seyring, M. Rettenmayr, Nanoscale 1 (2009) 238. [42] X.Y. Song, J.X. Zhang, L.M. Li, K.Y. Yang, G.Q. Liu, Acta Mater. 54(2006) 5541-5550. [43] M. Guttmann, Surf. Sci. 53(1975) 213-227. [44] D. Gupta, Interface Sci. 11(2003) 7-20. [45] P. Wynblatt, D. Chatain, Metall. Mater. Trans. A 37 (2006) 2595-2620. [46] E.D. Hondros, M.P. Seah, Metall. Trans. A 8 (1977) 1363-1371. [47] D. Scheiber, V.I. Razumovskiy, P. Puschnig, R. Pippan, L. Romaner, Acta Mater. 88(2015) 180-189. [48] X. Wu, Y. You, X.S. Kong, J. Chen, G.N. Luo, G.H. Lu, C.S. Liu, Z. Wang, Acta Mater. 120(2016) 315-326. [49] L. Huber, B. Grabowski, M. Militzer, J. Neugebauer, J. Rottler, Acta Mater. 132(2017) 138-148. [50] R. Mahjoub, K.J. Laws, N. Stanford, M. Ferry, Acta Mater. 158(2018) 257-268. [51] M. Yamaguchi, Y. Nishiyama, H. Kaburaki, Phys. Rev. 76(2007) 035418. [52] V.I. Razumovskiy, S.V. Divinski, L. Romaner, Acta Mater. 147(2018) 122-132. [53] R. Tran, Z. Xu, N. Zhou, B. Radhakrishnan, J. Luo, S.P. Ong, Acta Mater. 117(2016) 91-99. [54] F.W. Tang, X.Y. Song, Y.R. Li, H.B. Wang, X.M. Liu, Electrochim. Acta 186 (2015) 512-521. [55] W.W. Xu, X.Y. Song, N.D. Lu, C. Huang, Acta Mater. 58(2010) 396-407. [56] D. Scheiber, R. Pippan, P. Puschnig, L. Romaner, Model. Simul. Mater. Sci. Eng. 24(2016) 035013. [57] A.S. Wallner, K.A. Brandt, J. Chem. Educ. 76(1999) 1395-1397. [58] J. Weissmüller, Mater. Sci. Eng. A-Struct.179-180(1994) 102-107. [59] T. Chookajorn, C.A. Schuh, Phys. Rev. B 89 (2014) 064102. [60] P.C. Millett, R.P. Selvam, A. Saxena, Acta Mater. 55(2007) 2329-2336. [61] F. Liu, R. Kirchheim, J. Cryst. Growth 264 (2004) 385-391. [62] H. Guhl, H.S. Lee, P. Tangney, W.M.C.Foulkes, A.H. Heuer, T. Nakagawa, Y.Ikuhara, M.W. Finnis, Acta Mater. 99(2015) 16-28. [63] D. Scheiber, R. Pippan, P. Puschnig, A. Ruban, L. Romaner, Int. J. Refract. Met. Hard Mat. 60(2016) 75-81. [64] Z.W. Li, X.S. Kong, W. Liu, C.S. Liu, Q.F. Fang, Chin. Phys. B 23 (2014) 106107. [65] Y. Zhang, W.Q. Feng, Y.L. Liu, G.H. Lu, T. Wang, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 267 (2009) 3200-3203. [66] P. Lejček, O. Schneeweiss, Surf. Sci. 487(2001) 210-222. [67] T. Chookajorn, C.A. Schuh, Acta Mater. 73(2014) 128-138. [68] M. Ångqvist, J.M. Rahm, L. Gharaee, P. Erhart, Phys. Rev. Mater. 3(2019) 073605. [69] L. Gharaee, J. Marian, P. Erhart, J. Appl. Phys. 120(2016) 025901. |
[1] | Kai Hu, Jun Yi, Bo Huang, Gang Wang. Grain-size effect on dislocation source-limited hardening and ductilization in bulk pure Ni [J]. J. Mater. Sci. Technol., 2023, 154(0): 9-21. |
[2] | Bo Xu, Chong Wang, Qingyuan Wang. Toward tunable shape memory effect of NiTi alloy by grain size engineering: A phase field study [J]. J. Mater. Sci. Technol., 2023, 168(0): 276-289. |
[3] | Wentao Su, Lei Chen, Wen Zhang, Sijia Huo, , Yujin Wang, Yu Zhou. Insights into grain boundary segregation and solubility limit of Cr in (TiZrNbTaCr)C [J]. J. Mater. Sci. Technol., 2023, 139(0): 1-9. |
[4] | Caixu Wang, Xiaoli Zhao, Shujun Li, Lu Liu, Deliang Zhang, Mitsuo Niinomi. Low-cost surface modification of a biomedical Zr-2.5Nb alloy fabricated by electron beam melting [J]. J. Mater. Sci. Technol., 2023, 143(0): 178-188. |
[5] | H.T. Jeong, W.J. Kim. Effects of grain size and Al addition on the activation volume and strain-rate sensitivity of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2023, 143(0): 242-252. |
[6] | Hong Li, Bo Wu, Cong Lin, Xiao Wu, Tengfei Lin, Min Gao, Hong Tao, Wenjuan Wu, Chunlin Zhao. Microscopic origin and relevant grain size effect of discontinuous grain growth in BaTiO3-based ferroelectric ceramics [J]. J. Mater. Sci. Technol., 2023, 164(0): 119-128. |
[7] | D.P. Yang, T. Wang, Z.T. Miao, P.J. Du, G.D. Wang, H.L. Yi. Effect of grain size on the intrinsic mechanical stability of austenite in transformation-induced plasticity steels: The competition between martensite transformation and dislocation slip [J]. J. Mater. Sci. Technol., 2023, 162(0): 38-43. |
[8] | Wei Fu, Pengfei Dang, Shengwu Guo, Zijun Ren, Daqing Fang, Xiangdong Ding, Jun Sun. Heterogeneous fiberous structured Mg-Zn-Zr alloy with superior strength-ductility synergy [J]. J. Mater. Sci. Technol., 2023, 134(0): 67-80. |
[9] | Bailing An, Rongmei Niu, Yan Xin, William L. Starch, Zhaolong Xiang, Yifeng Su, Robert E. Goddard, Jun Lu, Theo M. Siegrist, Engang Wang, Ke Han. Suppression of discontinuous precipitation and strength improvement by Sc doping in Cu-6 wt%Ag alloys [J]. J. Mater. Sci. Technol., 2023, 135(0): 80-96. |
[10] | Mujin Yang, Chao Huang, Jiajia Han, Haichen Wu, Yilu Zhao, Tao Yang, Shenbao Jin, Chenglei Wang, Zhou Li, Ruiying Shu, Cuiping Wang, Huanming Lu, Gang Sha, Xingjun Liu. Development of the high-strength ductile ferritic alloys via regulating the intragranular and grain boundary precipitation of G-phase [J]. J. Mater. Sci. Technol., 2023, 136(0): 180-199. |
[11] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
[12] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Grain boundary segregation induced strong UHTCs at elevated temperatures: A universal mechanism from conventional UHTCs to high entropy UHTCs [J]. J. Mater. Sci. Technol., 2022, 123(0): 26-33. |
[13] | Lin Chen, Guo-Hui Meng, Chang-Jiu Li, Guan-Jun Yang. Critical scale grain size for optimal lifetime of TBCs [J]. J. Mater. Sci. Technol., 2022, 115(0): 241-250. |
[14] | Xiaorong Liu, Sihan Jiang, Jianlin Lu, Jie Wei, Daixiu Wei, Feng He. The dual effect of grain size on the strain hardening behaviors of Ni-Co-Cr-Fe high entropy alloys [J]. J. Mater. Sci. Technol., 2022, 131(0): 177-184. |
[15] | Jiangtao Yu, Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Panpan Xu, Peide Han. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 112(0): 184-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||