J. Mater. Sci. Technol. ›› 2023, Vol. 146: 121-130.DOI: 10.1016/j.jmst.2022.10.059
• Research Article • Previous Articles Next Articles
Xuancheng Wanga,1, Yuxiao Jiaa,1, Xuezhang Xiaoa,*, Panpan Zhoua, Jiapeng Bia, Jiacheng Qia, Ling Lva, Fen Xub, Lixian Sunb,*, Lixin Chena,c,*
Received:
2022-08-28
Revised:
2022-10-12
Accepted:
2022-10-19
Published:
2023-05-20
Online:
2023-05-15
Contact:
* State Key Laboratory of Silicon Materials, School of Ma-terials Science and Engineering, Zhejiang University, Hangzhou 310027, China. E-mail addresses: xzxiao@zju.edu.cn (X. Xiao), sunlx@guet.edu.cn (L. Sun), lxchen@zju.edu.cn (L. Chen)
About author:
1 These authors contributed equally to this work.
Xuancheng Wang, Yuxiao Jia, Xuezhang Xiao, Panpan Zhou, Jiapeng Bi, Jiacheng Qi, Ling Lv, Fen Xu, Lixian Sun, Lixin Chen. Robust architecture of 2D nano Mg-based borohydride on graphene with superior reversible hydrogen storage performance[J]. J. Mater. Sci. Technol., 2023, 146: 121-130.
[1] L. Schlapbach, A. Züttel, Nature 414 (2001) 353-358. [2] L.Z. Ouyang, W. Chen, J.W. Liu, M. Felderhoff, H. Wang, M. Zhu, Adv. Energy Mater. 7(2017) 8. [3] T. He, H.J. Cao, P. Chen, Adv. Mater. 31(2019) 19. [4] X. Yao, C.Z. Wu, H. Wang, H.M. Cheng, G.Q.M.Lu, J. Mater. Sci. Technol. 21(2005) 57-60. [5] J. Shao, X.Z. Xiao, X.L. Fan, X. Huang, B. Zhai, S.Q. Li, H.W. Ge, Q.D. Wang, L.X. Chen, Nano Energy 15 (2015) 244-255. [6] W. Chen, L. You, G.L. Xia, X.B. Yu, J. Mater. Sci.Technol. 79(2021) 205-211. [7] A. Zuttel, P. Wenger, S. Rentsch, P. Sudan, P. Mauron, C. Emmenegger, J. Power Sources 118 (2003) 1-7. [8] N.S. Mustafa, N.H. Idris, M. Ismail, Int. J. Hydrog. Energy 40 (2015) 7671-7677. [9] Z. Ding, Y. Lu, L. Li, L. Shaw, Energy Storage Mater. 20(2019) 24-35. [10] P.Y. Yao, Y. Jiang, Y. Liu, C.Z. Wu, K.C. Chou, T. Lyu, Q. Li, J. Magnes. Alloy. 8(2020) 461-471. [11] Y.P. Pang, Y.F. Liu, X. Zhang, Q. Li, M.X. Gao, H.G. Pan, Chem. Asian J. 10(2015) 2452-2459. [12] P. Vajeeston, P. Ravindran, A. Kjekshus, H. Fjellvag, Appl. Phys. Lett. 89(2006) 3. [13] Y.Y. Zhu, L.Z. Ouyang, H. Zhong, J.W. Liu, H. Wang, H.Y. Shao, Z.G. Huang, M. Zhu, Angew. Chem. Int. Ed. 59(2020) 8623-8629. [14] U. Bosenberg, J.W. Kim, D. Gosslar, N. Eigen, T.R. Jensen, J.M.B. von Colbe, Y.Zhou, M. Dahms, D.H. Kim, R. Gunther, Y.W. Cho, K.H. Oh, T. Klassen, R. Bormann, M. Dornheim, Acta Mater. 58(2010) 3381-3389. [15] X. Huang, X.Z. Xiao, X.C. Wang, Z.D. Yao, C.T. Wang, X.L. Fan, L.X. Chen, Energy Storage Mater. 13(2018) 199-206. [16] X.L. Fan, X.Z. Xiao, L.X. Chen, X.H. Wang, S.Q. Li, H.W. Ge, Q.D. Wang, J. Mater. Chem. A 1 (2013) 11368-11375. [17] J. Shao, X.Z. Xiao, X.L. Fan, L.T. Zhang, S.Q. Li, H.W. Ge, Q.D. Wang, L.X. Chen, J. Phys. Chem. C 118 (2014) 11252-11260. [18] Y.P. Pang, Q. Li, Scr. Mater. 130(2017) 223-228. [19] G.L. Soloveichik, M. Andrus, Y. Gao, J.C. Zhao, S. Kniajanski, Int. J. Hydrogen Energy 34 (2009) 2144-2152. [20] M. Paskevicius, M.P. Pitt, C.J. Webb, D.A. Sheppard, U. Filso, E.M. Gray, C.E. Buckley, J. Phys. Chem. C 116 (2012) 15231-15240. [21] B. Dai, D.S. Sholl, J.K. Johnson, J. Phys. Chem. C 112 (2008) 4391-4395. [22] X.Z. Xiao, J. Shao, L.X. Chen, H.Q. Kou, X.L. Fan, S.S. Deng, L.T. Zhang, S.Q. Li, H.W. Ge, Q.D. Wang, Int. J. Hydrogen Energy 37 (2012) 13147-13154. [23] J.J. Jiang, J. Wei, H.Y. Leng, Q. Li, K.C. Chou, Int. J. Hydrogen Energy 38 (2013) 10919-10925. [24] D. Blanchard, J.B. Maronsson, M.D. Riktor, J. Kheres, D. Sveinbjornsson, E.G. Bardaji, A. Leon, F. Juranyi, J. Wuttke, K. Lefmann, B.C. Hauback, M. Fichtner, T. Vegge, J. Phys. Chem. C 116 (2012) 2013-2023. [25] N. Hanada, K. Chopek, C. Frommen, W. Lohstroh, M. Fichtner, J. Mater. Chem. 18(2008) 2611-2614. [26] H.Q. Kou, X.Z. Xiao, J.X. Li, S.Q. Li, H.W. Ge, Q.D. Wang, L.X. Chen, Int. J. Hydrogen Energy 37 (2012) 1021-1026. [27] S. Guo, H.Y.L.Chan, D. Reed, D.Book, J. Alloy. Compd. 580(2013) S296-S300. [28] O. Zavorotynska, S. Deledda, B.C. Hauback, Int. J. Hydrogen Energy 41 (2016) 9885-9892. [29] R.J. Newhouse, V. Stavila, S.J. Hwang, L.E. Klebanoff, J.Z. Zhang, J. Phys. Chem. C 114 (2010) 5224-5232. [30] I. Saldan, Int. J. Hydrogen Energy 41 (2016) 11201-11224. [31] P. Zanella, L. Crociani, N. Masciocchi, G. Giunchi, Inorg. Chem. 46(2007) 9039-9041. [32] L. George, V. Drozd, S.K. Saxena, E.G. Bardaji, M. Fichtner, J. Phys. Chem. C 113 (2009) 4 86-4 92. [33] Y. Filinchuk, R. Cerny, H. Hagemann, Chem. Mater. 21(2009) 925-933. [34] S. Gupta, I.Z. Hlova, T. Kobayashi, R.V. Denys, F. Chen, I.Y. Zavaliy, M. Pruski, V.K. Pecharsky, Chem. Commun. 49(2013) 828-830. [35] A. Remhof, Y.G. Yan, D. Rentsch, A. Borgschulte, C.M. Jensen, A. Zuttel, J. Mater. Chem. A 2 (2014) 7244-7249. [36] D.T. Shane, L.H. Rayhel, Z.G. Huang, J.C. Zhao, X. Tang, V. Stavila, M.S. Conradi, J. Phys. Chem. C 115 (2011) 3172-3177. [37] X. Wang, X. Xiao, J. Zheng, Z. Yao, M. Zhang, X. Huang, L. Chen, Mater. Today Energy 18 (2020) 9. [38] Y.G. Yan, A. Remhof, D. Rentsch, A. Zuttel, Chem. Commun. 51(2015) 700-702. [39] M. Chong, A. Karkamkar, T. Autrey, S. Orimo, S. Jalisatgi, C.M. Jensen, Chem. Commun. 47(2011) 1330-1332. [40] H.W. Li, K. Miwa, N. Ohba, T. Fujita, T. Sato, Y. Yan, S. Towata, M.W. Chen, S. Orimo, Nanotechnology 20 (2009) 7. [41] K. Chlopek, C. Frommen, A. Leon, O. Zabara, M. Fichtner, J. Mater. Chem. 17(2007) 3496-3503. [42] X.C. Wang, X.Z. Xiao, J.G. Zheng, X. Huang, M. Chen, L.X. Chen, Int. J. Hydrogen Energy 45 (2020) 2044-2053. [43] I. Saldan, C. Frommen, I. Llamas-Jansa, G.N. Kalantzopoulos, S. Hino, B. Arstad, R.H. Heyn, O. Zavorotynska, S. Deledda, M.H. Sorby, H. Fjellvag, B.C. Hauback, Int. J. Hydrogen Energy 40 (2015) 12286-12293. [44] O. Zavorotynska, S. Deledda, J.G. Vitillo, I. Saldan, M.N. Guzik, M. Baricco, J.C. Walmsley, J. Muller, B.C. Hauback, Energies 8 (2015) 9173-9190. [45] S. Kumar, A. Singh, K. Nakajima, A. Jain, H. Miyaoka, T. Ichikawa, G.K. Dey, Y. Kojima, Int. J. Hydrogen Energy 42 (2017) 22342-22347. [46] X.Z. Xiao, X.L. Fan, K.R. Yu, S.Q. Li, C.P. Chen, Q.D. Wang, L.X. Chen, J. Phys. Chem. C 113 (2009) 20745-20751. [47] X.L. Fan, X.Z. Xiao, L.X. Chen, S.Q. Li, H.W. Ge, Q.D. Wang, J. Phys. Chem. C 115 (2011) 2537-2543. [48] X.W. Chen, F. Yuan, Q.F. Gu, X.B. Yu, Dalton Trans. 42(2013) 14365-14368. [49] A.A. Ibikunle, A.J. Goudy, Int. J. Hydrogen Energy 37 (2012) 12420-12424. [50] J.Z. Yang, H. Fu, P. Song, J. Zheng, X.G. Li, Int. J. Hydrogen Energy 37 (2012) 6776-6783. [51] L.T. Zhang, J.G. Zheng, L.X. Chen, X.Z. Xiao, T. Qin, Y.Q. Jiang, S.Q. Li, H.W. Ge, Q.D. Wang, Int. J. Hydrogen Energy 40 (2015) 14163-14172. [52] H.Y. Zhang, G.L. Xia, J. Zhang, D.L. Sun, Z.P. Guo, X.B. Yu, Adv. Energy Mater. 8(2018) 9. [53] M. Han, Q. Zhao, Z.Q. Zhu, Y.X. Hu, Z.L. Tao, J. Chen, Nanoscale 7 (2015) 18305-18311. [54] M. Fichtner, Z. Zhao-Karger, J.J. Hu, A. Roth, P. Weidler, Nanotechnology 20 (2009) 5. [55] Y.G. Yan, Y.S. Au, D. Rentsch, A. Remhof, P.E. de Jongh, A. Zuttel, J. Mater. Chem. A 1 (2013) 11177-11183. [56] X.L. Fan, X.Z. Xiao, J. Shao, L.T. Zhang, S.Q. Li, H.W. Ge, Q.D. Wang, L.X. Chen, Nano Energy 2 (2013) 995-1003. [57] J.L. White, N.A. Strange, J.D. Sugar, J.L. Snider, A. Schneemann, A.S. Lipton, M.F. Toney, M.D. Allendorf, V. Stavila, Chem. Mater. 32(2020) 5604-5615. [58] Q.W. Lai, C. Pratthana, Y.W. Yang, A. Rawal, K.F.Aguey-Zinsou, ACS Appl. Nano Mater. 4(2021) 973-978. [59] G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186. [60] Y.Le Page, P. Saxe, Phys. Rev. B 65 (2002) 14. [61] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868. [62] T.P. Hardcastle, C.R. Seabourne, R. Zan, R.M.D. Brydson, U. Bangert, Q.M. Ramasse, K.S. Novoselov, A.J. Scott, Phys. Rev. B 87 (2013) 16. [63] V. Ozolins, E.H. Majzoub, C. Wolverton, Phys. Rev. Lett. 10 0 (20 08) 4. [64] Y.R. Wang, X.W. Chen, H.Y. Zhang, G.L. Xia, D.L. Sun, X.B. Yu, Adv. Mater. 32(2020) 8. [65] L.F. Jones, D. Dollimore, T. Nicklin, Thermochim. Acta 13 (1975) 240-245. [66] J.H. Sharp, G.W. Brindley, B.N.N.Achar, J. Am. Ceram. Soc. 49(1966) 379-382. [67] X.C. Wang, X.Z. Xiao, J.G. Zheng, Z.M. Hang, W.P. Lin, Z.D. Yao, M. Zhang, L.X. Chen, Int. J. Hydrogen Energy 46 (2021) 23737-23747. [68] H.W. Li, K. Kikuchi, Y. Nakamori, N. Ohba, K. Miwa, S. Towata, S. Orimo, Acta Mater. 56(2008) 1342-1347. [69] J.G. Yuan, H.X. Huang, Z. Jiang, Y.J. Lv, B.G. Liu, B. Zhang, Y.H. Yan, Y. Wu, Appl. ACS Nano Mater. 4(2021) 1604-1612. [70] Z.D. Yao, X.Z. Xiao, Z.Q. Liang, X. Huang, H.Q. Kou, W.H. Luo, C.G. Chen, L.X. Chen, J. Mater. Chem. A 8 (2020) 9322-9330. [71] Y.S. Zhang, E. Majzoub, V. Ozolins, C. Wolverton, J. Phys. Chem. C 116 (2012) 10522-10528. [72] M. Chong, M. Matsuo, S. Orimo, T. Autrey, C.M. Jensen, Inorg. Chem. 54(2015) 4120-4125. [73] M.L. Christian, K.F. Aguey-Zinsou, ACS Nano 6 (2012) 7739-7751. [74] Q. Li, X.D. Peng, F.S. Pan, J. Magnes. Alloy. 9(2021) 2223-2224. [75] Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, F.S. Pan, Int. J. Miner. Metall. Mater. 29(2022) 32-48. [76] Y. Fang, J. Zhang, M.Y. Hua, D.W. Zhou, J. Mater. Sci. 55(2020) 1959-1972. [77] A. Schneemann, L.F. Wan, A.S. Lipton, Y.S. Liu, J.L. Snider, A.A. Baker, J.D. Sugar, C.D. Spataru, J.H. Guo, T.S. Autrey, M. Jorgensen, T.R. Jensen, B.C. Wood, M.D. Allendorf, V. Stavila, ACS Nano 14 (2020) 10294-10304. [78] P.P. Zhou, Z.M. Cao, X.Z. Xiao, R.H. Li, Z.Q. Liang, H.K. Zhang, L.J. Zhan, Z.N. Li, L.J. Jiang, L.X. Chen, ACS Appl. Energy Mater. 5(2022) 3783-3792. [79] J.T. Hu, H.H. Shen, M. Jiang, H.F. Gong, H.Y. Xiao, Z.J. Liu, G.A. Sun, X.T. Zu, Nanomaterials 9 (2019) 12. [80] Z.Q. Liang, Z.D. Yao, X.Z. Xiao, R.H. Li, J.C. Qi, J.P. Bi, X.C. Wang, H.Q. Kou, W.H. Luo, C.A. Chen, L.X. Chen, ACS Sustain. Chem. Eng. 9(2021) 9139-9148. [81] S. Jeong, T.W. Heo, J. Oktawiec, R.P. Shi, S. Kang, J.L. White, A. Schneemann, E.W. Zaia, L.W.F. Wan, K.G. Ray, Y.S. Liu, V. Stavila, J.H. Guo, J.R. Long, B.C. Wood, J.J. Urban, ACS Nano 14 (2020) 1745-1756. [82] Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci.Technol. 44(2020) 171-190. [83] Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, F.S. Pan, J. Magnes. Alloy. 9(2021) 1922-1941. |
[1] | Kaveh Edalati, Etsuo Akiba, Walter J. Botta, Yuri Estrin, Ricardo Floriano, Daniel Fruchart, Thierry Grosdidier, Zenji Horita, Jacques Huot, Hai-Wen Li, Huai-Jun Lin, Ádám Révész, Michael J. Zehetbauer. Impact of severe plastic deformation on kinetics and thermodynamics of hydrogen storage in magnesium and its alloys [J]. J. Mater. Sci. Technol., 2023, 146(0): 221-239. |
[2] | Caixu Wang, Xiaoli Zhao, Shujun Li, Lu Liu, Deliang Zhang, Mitsuo Niinomi. Low-cost surface modification of a biomedical Zr-2.5Nb alloy fabricated by electron beam melting [J]. J. Mater. Sci. Technol., 2023, 143(0): 178-188. |
[3] | Tuzhi Xiong, Xincheng Yao, David Adekoya, Hao Yang, M. -Sadeeq Balogun. Scaffold-regulation buffered MoS2 anode kinetics for high-performance Na-/K-ion storage [J]. J. Mater. Sci. Technol., 2023, 145(0): 14-24. |
[4] | Chengpeng Xue, Yuxuan Zhang, Shuo Wang, Guangyuan Tian, Xinghai Yang, Yubin Ke, Zhenhua Xie, Junsheng Wang. Achieving highest Young's modulus in Al-Li by tracing the size and bonding evolution of Li-rich precipitates [J]. J. Mater. Sci. Technol., 2023, 145(0): 125-135. |
[5] | Xuelian Zhang, Xin Zhang, Lingchao Zhang, Zhenguo Huang, Fang Fang, Yaxiong Yang, Mingxia Gao, Hongge Pan, Yongfeng Liu. Remarkable low-temperature hydrogen cycling kinetics of Mg enabled by VHx nanoparticles [J]. J. Mater. Sci. Technol., 2023, 144(0): 168-177. |
[6] | Yang Zhao, Tong Li, Haixiang Huang, Tingting Xu, Bogu Liu, Bao Zhang, Jianguang Yuan, Ying Wu. A highly efficient hydrolysis of MgH2 catalyzed by NiCo@C bimetallic synergistic effect [J]. J. Mater. Sci. Technol., 2023, 137(0): 176-183. |
[7] | Pan Wu, Yubing Zhang, Jiaqi Hu, Shaojie Song, Yong Li, Huiyuan Wang, Guo Yuan, Zhaodong Wang, Shizhong Wei, Feng Liu. Generalized stability criterion for controlling solidification segregation upon twin-roll casting [J]. J. Mater. Sci. Technol., 2023, 134(0): 163-177. |
[8] | Xianghui Feng, Nan Li, Baiyi Chen, Chao Zeng, Tianyu Bai, Kai Wu, Yonghong Cheng, Bing Xiao. Thermodynamics for the non-conventional synthesizing of out-of-plane ordered double-transition metal “312” and “413” MAX phases (o-MAX): A high throughput linear programing first-principles calculation [J]. J. Mater. Sci. Technol., 2023, 134(0): 81-88. |
[9] | Qinglong Liu, Junyu Tian, Wenting Wei. A model for converting thermal analysis to volume fraction of high carbon bearing steels during low-temperature tempering [J]. J. Mater. Sci. Technol., 2023, 136(0): 212-222. |
[10] | D.D. Zhang, J. Kuang, H. Xue, J.Y. Zhang, G. Liu, J. Sun. A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability [J]. J. Mater. Sci. Technol., 2023, 132(0): 201-212. |
[11] | R.T. da Silva, J.M. Morbec, G. Rahman, H.B. de Carvalho. A comprehensive study on the processing of Co:ZnO nanostructured ceramics: Defect chemistry engineering and grain growth kinetics [J]. J. Mater. Sci. Technol., 2023, 138(0): 221-232. |
[12] | A. Shuitcev, Y. Ren, B. Sun, G.V. Markova, L. Li, Y.X. Tong, Y.F. Zheng. Precipitation and coarsening kinetics of H-phase in NiTiHf high temperature shape memory alloy [J]. J. Mater. Sci. Technol., 2022, 114(0): 90-101. |
[13] | Lihe Qian, Zhi Li, Tongliang Wang, Dongdong Li, Fucheng Zhang, Jiangying Meng. Roles of pre-formed martensite in below-Ms bainite formation, microstructure, strain partitioning and impact absorption energies of low-carbon bainitic steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 69-84. |
[14] | Xu K., Liu J.D., van der Zwaag S., Xu W., Li J.G.. Numerical simulation of precipitation kinetics in multicomponent alloys [J]. J. Mater. Sci. Technol., 2022, 128(0): 98-106. |
[15] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||