J. Mater. Sci. Technol. ›› 2022, Vol. 96: 1-10.DOI: 10.1016/j.jmst.2021.05.003
• Research Article • Next Articles
Yifeng Guoa,b, Zhibin Xiaa,b, Qiang Lia,b, Mingyue Sunc,*(), Weifeng Liuc, Shaogang Wangc, Zhe Shena,b, Tianxiang Zhenga,b, Biao Dinga,b, Yunbo Zhonga,b,**(
)
Received:
2021-03-24
Revised:
2021-04-25
Accepted:
2021-05-01
Published:
2022-01-10
Online:
2022-01-05
Contact:
Mingyue Sun,Yunbo Zhong
About author:
**State Key Laboratory of Advanced Special Steel, Shang-hai University, Shanghai 200444, China. E-mail addresses: yunboz@staff.shu.edu.cn (Y. Zhong).Yifeng Guo, Zhibin Xia, Qiang Li, Mingyue Sun, Weifeng Liu, Shaogang Wang, Zhe Shen, Tianxiang Zheng, Biao Ding, Yunbo Zhong. Motion and removal behavior of inclusions in electrode tip during magnetically controlled electroslag remelting: X-ray microtomography characterization and modeling verification[J]. J. Mater. Sci. Technol., 2022, 96: 1-10.
C | Si | Cr | Mn | Al | S | P |
---|---|---|---|---|---|---|
0.990 | 0.250 | 1.430 | 0.300 | 0.014 | 0.006 | 0.006 |
Table I. Chemical compositions of the consumable electrode (GCr15 steel) used in this study (mass percentage, %).
C | Si | Cr | Mn | Al | S | P |
---|---|---|---|---|---|---|
0.990 | 0.250 | 1.430 | 0.300 | 0.014 | 0.006 | 0.006 |
Fig. 1. (a) Schematic diagram of the remelting apparatus (1 mechanical apparatus, 2 consumable electrode, 3 water-cooled mold, 4 MF generator, 5 slag pool, 6 droplets, 7 metal pool, 8 ESR ingot, 9 water-cooled baseplate), (b) The obtained electrode tip and ESR ingot, (c) Schematic diagram of sampling method for macro/micro-structure and inclusion detection (type) in electrode tip, (d) Schematic diagram of sampling method for 3D characterization of inclusion in electrode tip, (e) Schematic diagram of the 3D X-ray experiment, respectively.
Fig. 2. Macrostructures of the longitudinal section of the electrode tip under different experimental parameters, (a) 700A without ASMF, (b) 700A with ASMF respectively.
Fig. 3. The enlarged views of the featured areas in electrode tip, (a) Electrode matrix, (b) MZ and LMF, (c) 3D characterization of the shrinkage porosity in MZ, respectively.
Fig. 4. 3D characterization of inclusions at different regions in LMF (with or without ASMF) in this study, (a) Mid region without ASMF, (b) Half-radius region without ASMF, (c) Edge region without ASMF, (d) Mid region with ASMF, (e) Half-radius region with ASMF, (f) Edge region with ASMF, respectively.
Fig. 5. Statistical results on the number of inclusions (different size) in different regions of LMF (with or without ASMF) in this study, (a) Mid region without ASMF, (b) Half-radius region without ASMF, (c) Edge region without ASMF, (d) Mid region with ASMF, (e) Half-radius region with ASMF, (f) Edge region with ASMF, respectively
Fig. 6. Statistics results on the probability of inclusions (different size) in different regions of LMF (with or without ASMF) in this study, (a) Mid region without ASMF, (b) Half-radius region without ASMF, (c) Edge region without ASMF, (d) Mid region with ASMF, (e) Half-radius region with ASMF, (f) Edge region with ASMF, respectively.
Fig. 7. 3D characterization of inclusions at different regions in MZ (with or without ASMF) in this study, (a) Mid region without ASMF, (b) Half-radius region without ASMF, (c) Mid region with ASMF, (d) Half-radius region with ASMF, respectively.
Fig. 8. 2D morphologies and types of the inclusions in Matrix, MZ and LMF (with or without ASMF) in this study, (a) (b) and (c) SiO2, (d) and (e) Al2O3, (f) TiN, respectively.
Fig. 9. Schematic diagrams of microstructure evolution and motion behavior of inclusions in electrode tip in this study, (a) Without ASMF, (b) With ASMF, respectively.
Fig. 10. Schematic diagram of the FS driving inclusions to LSI and geometric model adapted in this study, MLI: MZ/LMF interface, LSI: LMF/slag interface, VLSI: flow velocity of LSI, FD: drag force, FB: buoyancy force, GI: gravity force, FS: Saffman force, respectively.
Fig. 11. Simulation results of the motion trajectory of inclusions (in different size, type or density, release position of MLI) in LMF in this study, (a) SiO2 in ESR, (b) SiO2 in MC-ESR, (c) Al2O3 in ESR, (d) Al2O3 in MC-ESR, (e) TiN in ESR, (f) TiN in MC-ESR, respectively.
[1] | L.T. Gui, M.J Long, S.X. Wu, Z.H. Dong, D.F. Chen, Y.W. Huang, H.M. Duan, L. Vi-tos, J.Mater. Sci. Technol. 35 (2019) 2383-2395. |
[2] |
C.Y. Yang, Y.K. Luan, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 35 (2019) 1298-1308.
DOI URL |
[3] |
D. Texier, J.C. Stinville, M.P. Echlin, S. Pierret, P. Villechaise, T.M. Pollock, J. Cormier, Acta Mater. 165 (2019) 241-258.
DOI URL |
[4] |
R. Bandyopadhyay, M.D. Sangid, Acta Mater. 177 (2019) 20-34.
DOI URL |
[5] |
W.F. Liu, Y.F. Cao, Y.F. Guo, M.Y. Sun, B. Xu, D.Z. Zhong, J. Mater. Sci. Technol. 38 (2020) 170-182.
DOI URL |
[6] |
Y.F. Guo, Z.B. Xia, Z. Shen, Q. Li, C.X. Sun, T.X. Zheng, W.L. Ren, Z.S. Lei, Y.B. Zhong, J. Mater. Process. Technol. 290 (2021) 116962.
DOI URL |
[7] |
Y. Liu, X.J. Wang, G.Q. Li, Q. Wang, Z. Zhang, B.K. Li, Vacuum 154 (2018) 351-358.
DOI URL |
[8] |
D. Zhan, Z. Yangpeng, R.J. Liu, Z.H. Jiang, H.S. Zhang, Ironmak. Steelmak. 44 (2016) 1-9.
DOI URL |
[9] |
Z.H. Jiang, D. Hou, Y. Dong, Y. Cao, H.B. Cao, W. Gong, Metall. Mater. Trans. B 47 (2016) 1465-1474.
DOI URL |
[10] |
D. Hou, Z.H. Jiang, Y. Dong, W. Gong, Y. Cao, H.B. Cao, ISIJ Int. 57 (2017) 1400-1409.
DOI URL |
[11] |
G. Du, J. Li, Z.B. Wang, ISIJ Int. 58 (2017) 78-87.
DOI URL |
[12] |
I. Aksenov, M. Matveeva, I. Chumanov, Russ. Metall. 2019 (2019) 601-607.
DOI URL |
[13] |
C. Shi, W.T. Yu, H. Wang, J. Li, M. Jiang, Metall. Mater. Trans. B 48 (2016) 146-161.
DOI URL |
[14] | H.B. Cao, Z.H. Jiang, Y.W. Dong, F.B. Liu, Z.W. Hou, K. Yao, J. Yu, ISIJ Int. 60 (2019). |
[15] |
X.C. Huang, B.K. Li, Z.Q. Liu, M.Z. Li, F.S. Qi, Int. J. Heat Mass Transf. 163 (2020) 120473.
DOI URL |
[16] | L.Z. Chang, K.H. Chang, X.M. Zhu, J.S. Chen, G. Gao, J. Process Eng. 19 (2019) 1186-1196. |
[17] |
Y.B. Zhong, Q. Li, Y.P. Fang, H. Wang, M.H. Peng, L.C. Dong, T.X. Zheng, Z.S. Lei, W.L. Ren, Z.M. Ren, Mater. Sci. Eng. A 660 (2016) 118-126.
DOI URL |
[18] |
Q. Li, Z.B Xia, Y.F. Guo, Z. Shen, T.X. Zheng, Y.B. Zhong, ISIJ Int. 60 (2020) 2462-2470.
DOI URL |
[19] | Q. Li, Y.B. Zhong, C.X. Sun, H. Wang, T.X. Zheng, W.L. Ren, Z.M. Ren, Acta Metall. Sin.-Engl. Lett. 31 (2018) 83-88. |
[20] | Z.B. Li, J.W. Zhang, X.Q. Che, J. Iron Steel Res. 9 (1997) 7-12. |
[21] |
H. Wang, J. Li, C.B. Shi, Y.F. Qi, Y.X. Dai, ISIJ Int. 59 (2019) 828-838.
DOI URL |
[22] |
Q. Wang, R.T. Wang, Z. He, G.Q. Li, B.K. Li, H.B. Li, Int. J. Heat Mass Transf. 125 (2018) 1333-1344.
DOI URL |
[23] |
X.C. Huang, B.K. Li, Z.Q. Liu, X. Yang, F. Tsukihashi, Int. J. Heat Mass Transf. 135 (2019) 1300-1311.
DOI URL |
[24] |
Y.F. Guo, Z.B. Xia, Z. Shen, Q. Li, C.X. Sun, T.X. Zheng, W.L. Ren, Z.S. Lei, Y.B. Zhong, Metall. Mater. Trans. B 52 (2021) 282-291.
DOI URL |
[25] |
J. Šmilauerová, P. Harcuba, J. Pospíšil, Z. Mat ˇej, V. Holý, Acta Mater. 61 (2013) 6635-6645.
DOI URL |
[26] |
Y.F. Cao, Y. Chen, D.Z. Li, Acta Mater. 107 (2016) 325-336.
DOI URL |
[27] |
D. Naragani, M.D. Sangid, P.A. Shade, J.C. Schuren, H. Sharma, J.S. Park, P. Kene- sei, J.V. Bernier, T.J. Turner, I. Parr, Acta Mater. 137 (2017) 71-84.
DOI URL |
[28] |
C.X. Sun, Y.F. Guo, Q. Li, Z. Shen, T.X. Zheng, H. Wang, W.L. Ren, Z.S. Lei, Y.B. Zhong, Metals 10 (2020) 647.
DOI URL |
[29] |
Y. Meng, S. Sugiyama, J. Yanagimoto, J. Mater. Process. Technol. 212 (2012) 1731-1741.
DOI URL |
[30] |
Y.F. Guo, M.Y. Sun, B. Xu, D.Z. Li, J. Mater. Process. Technol. 249 (2017) 202-211.
DOI URL |
[31] |
Y. Liu, X.J. Wang, G.Q Li, X.C Huang, Q. Wang, B.K. Li, J. Mater. Res. Technol. 9 (2020) 1619-1630.
DOI URL |
[32] |
D.Q. Geng, H. Lei, J.C. He, ISIJ Int. 50 (2010) 1597-1605.
DOI URL |
[33] |
H.T. Ling, L.F. Zhang, H. Li, Metall. Mater. Trans. B 47 (2016) 2991.
DOI URL |
[34] |
Y.L. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[35] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[36] |
Q. Luo, K. Li, Q. Li, J. Mater. Sci. Technol. 34 (2018) 1592-1601.
DOI URL |
[37] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[38] | Z.B. Li, W.H. Zhou, Y.D. Li, Iron Steel 01 (1980) 20-26. |
[39] | Q. Ren, Y.X. Zhang, Y. Ren, L.F. Zhang, J.J. Wang, Y.D. Wang, J. Mater. Sci. Tech- nol. 61 (2021) 147-158. |
[40] | Z.B. Li, in: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, 2010, pp. 22-26. (in Chinese). |
[41] | A. Kharicha, A. Ludwig, M. Wu, TMS Ann. MTG 2 (2011) 771-778. |
[42] |
A. Kharicha, A. Ludwig, M.H. Wu, ISIJ Int. 54 (2014) 1621-1628.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||