J. Mater. Sci. Technol. ›› 2021, Vol. 88: 45-55.DOI: 10.1016/j.jmst.2021.02.014
Previous Articles Next Articles
Xipeng Xina, Na Songa, Ruiming Jiaa, Bingnan Wanga, Hongzhou Donga, Shuai Mab, Lina Suia, Yingjie Chena, Qian Zhanga, Lifeng Donga, Liyan Yua,*(
)
Received:2020-11-15
Revised:2021-02-05
Accepted:2021-02-06
Published:2021-03-19
Online:2021-03-19
Contact:
Liyan Yu
About author:*E-mail address: liyanyu@qust.edu.cn (L. Yu).1These authors contributed equally.
Xipeng Xin, Na Song, Ruiming Jia, Bingnan Wang, Hongzhou Dong, Shuai Ma, Lina Sui, Yingjie Chen, Qian Zhang, Lifeng Dong, Liyan Yu. N, P-codoped porous carbon derived from chitosan with hierarchical N-enriched structure and ultra-high specific surface Area toward high-performance supercapacitors[J]. J. Mater. Sci. Technol., 2021, 88: 45-55.
Fig. 1. SEM images of NPC-600 (a, d), NPC-700 (b, e), and NPC-800 (c, f); TEM images of NPC-700 (g-i) and EDS elemental mapping images for C, N, O, and P elements (j).
Fig. 3. (a-c) N2 adsorption/desorption isotherms of NPC-X samples (insets are the plots of pore size distributions calculated from NLDFT model), and (d) comparison of SSA for all samples.
| Sample | SBETa (m2 g-1) | Smicrob (m2 g-1) | Smesoc (m2 g-1) | Smeso/SBET (%) | Vtotal d (cm3 g-1) | Vmicroe (cm3 g-1) | Vmesof (cm3 g-1) | Dag (nm) |
|---|---|---|---|---|---|---|---|---|
| NPC-600 | 2483 | 1319 | 1164 | 42.9 | 1.55 | 0.55 | 1.00 | 3.08 |
| NPC-700 | 3646 | 1253 | 2393 | 65.6 | 2.87 | 0.56 | 2.31 | 3.86 |
| NPC-800 | 3022 | 735 | 2287 | 75.6 | 2.67 | 0.35 | 2.32 | 4.25 |
| @NPC-700 | 2545 | 1324 | 1221 | 48.0 | 1.96 | 0.76 | 1.20 | 2.71 |
| NC-700 | 2248 | 1493 | 755 | 50.6 | 1.36 | 0.56 | 0.80 | 2.23 |
Table 1 Pore structure parameters of all samples.
| Sample | SBETa (m2 g-1) | Smicrob (m2 g-1) | Smesoc (m2 g-1) | Smeso/SBET (%) | Vtotal d (cm3 g-1) | Vmicroe (cm3 g-1) | Vmesof (cm3 g-1) | Dag (nm) |
|---|---|---|---|---|---|---|---|---|
| NPC-600 | 2483 | 1319 | 1164 | 42.9 | 1.55 | 0.55 | 1.00 | 3.08 |
| NPC-700 | 3646 | 1253 | 2393 | 65.6 | 2.87 | 0.56 | 2.31 | 3.86 |
| NPC-800 | 3022 | 735 | 2287 | 75.6 | 2.67 | 0.35 | 2.32 | 4.25 |
| @NPC-700 | 2545 | 1324 | 1221 | 48.0 | 1.96 | 0.76 | 1.20 | 2.71 |
| NC-700 | 2248 | 1493 | 755 | 50.6 | 1.36 | 0.56 | 0.80 | 2.23 |
Fig. 4. (a) XPS survey of NPC-600, NPC-700, and NPC-800, (b-e) high-resolution XPS spectra of the C1s, O1s, N1s, and P2p of NPC-700, and (f) schematic of different N functionalities and P-containing functional groups in the carbon matrix.
| Sample | XPS (at %) | % of total N1s | % of total P2p | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| C % | N % | O % | P % | N-6 | N-5 | N-Q | N-X | P-O | P-C | |
| NPC-600 | 77.32 | 9.81 | 12.90 | 0.78 | 19.1 | 40.8 | 18.0 | 22.1 | 48.8 | 51.2 |
| NPC-700 | 81.85 | 8.15 | 8.98 | 1.02 | 24.1 | 43.8 | 18.9 | 13.2 | 32.5 | 67.5 |
| NPC-800 | 88.32 | 3.17 | 7.23 | 1.28 | 17.3 | 41.9 | 28.6 | 12.2 | 27.6 | 72.4 |
| @NPC-700 | 86.39 | 3.14 | 9.73 | 0.74 | 22.1 | 38.6 | 20.9 | 18.4 | 42.3 | 57.7 |
| NC-700 | 83.95 | 6.12 | 9.93 | — | 19.0 | 42.3 | 18.6 | 19.1 | — | — |
Table 2 C, N, O, and P contents of carbon samples and their surface concentrations of N and P obtained from XPS.
| Sample | XPS (at %) | % of total N1s | % of total P2p | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| C % | N % | O % | P % | N-6 | N-5 | N-Q | N-X | P-O | P-C | |
| NPC-600 | 77.32 | 9.81 | 12.90 | 0.78 | 19.1 | 40.8 | 18.0 | 22.1 | 48.8 | 51.2 |
| NPC-700 | 81.85 | 8.15 | 8.98 | 1.02 | 24.1 | 43.8 | 18.9 | 13.2 | 32.5 | 67.5 |
| NPC-800 | 88.32 | 3.17 | 7.23 | 1.28 | 17.3 | 41.9 | 28.6 | 12.2 | 27.6 | 72.4 |
| @NPC-700 | 86.39 | 3.14 | 9.73 | 0.74 | 22.1 | 38.6 | 20.9 | 18.4 | 42.3 | 57.7 |
| NC-700 | 83.95 | 6.12 | 9.93 | — | 19.0 | 42.3 | 18.6 | 19.1 | — | — |
Fig. 5. Illustration (a) and electrostatic potential plots (b) of GR-N4, GR-N4P and GR-N5P, where carbon, hydrogen, oxygen, nitrogen and phosphorus atoms are colored in gray, white, red, blue and orange, respectively.
Fig. 6. Electrochemical performance of all samples in a three-electrode system (6 M KOH): (a) CV curves of all samples at a scan rate of 20 mV s-1; (b) GCD curves of all samples at a current density of 1 A g-1; (c) CV curves of NPC-700 at different scan rates (5-100 mV s-1); (d) GCD curves of NPC-700 at different current densities (0.5-20 A g-1); (e) Specific capacitance of all samples calculated from GCD curves at various current densities; (f) The correlation among specific capacitance, specific surface area, and heteroatom contents of as-prepared samples; (g) Nyquist plots of all samples (inset is the magnified plots); (h) Bode plots for all samples; (i) Cycle life and coulombic efficiency of NPC-700 electrode (the inset presents the GCD curves for the first five cycles and the last five cycles).
Fig. 7. (a) Schematic diagram of the assembled NPC-700//NPC-700 symmetric supercapacitor; (b) CV curves at different voltages; (c) CV curves at various scan rates; (d) GCD curves at various current densities; (e) specific capacitance of the supercapacitor calculated at various current densities; (f) Nyquist plots of the supercapacitor before and after 10,000 cycles (the inset is the amplified high-frequency region); (g) Ragone plots of the NPC-700//NPC-700 symmetric supercapacitor in comparison with some previously reported results; (h) Cycling stability after 10,000 cycles at a current density of 5 A g-1 (the inset shows a red LED light powered by three symmetric supercapacitors in series connection).
| [1] |
W. Chen, M. Luo, C. Liu, S. Hong, X. Wang, P. Yang, X. Zhou, Carbohydr. Polym. 219 (2019) 229-239.
DOI URL |
| [2] |
Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie, C.M. Chen, J. Mater. Chem. A 7 (2019) 16028-16045.
DOI URL |
| [3] |
D. Tang, S. Hu, F. Dai, R. Yi, M.L. Gordin, S. Chen, J. Song, D. Wang, ACS Appl. Mater Inter. 8 (2016) 6779-6783.
DOI URL |
| [4] |
L. Sui, Y. Wang, W. Ji, H. Kang, L. Dong, L. Yu, Int. J. Hydrogen Energ. 42 (2017) 29820-29829.
DOI URL |
| [5] |
Y.Q. Zhao, M. Lu, P.Y. Tao, Y.J. Zhang, X.T. Gong, Z. Yang, G.Q. Zhang, H.L. Li, J. Power Sources 307 (2016) 391-400.
DOI URL |
| [6] |
D. Zhang, J. Zhao, C. Feng, R. Zhao, Y. Sun, T. Guan, B. Han, N. Tang, J. Wang, K. Li, J. Qiao, J. Zhang, J. Power Sources 342 (2017) 363-370.
DOI URL |
| [7] |
K. Zheng, Y. Li, M. Zhu, X. Yu, M. Zhang, L. Shi, J. Cheng, J. Power Sources 366 (2017) 270-277.
DOI URL |
| [8] |
D. Zhu, Y. Wang, W. Lu, H. Zhang, Z. Song, D. Luo, L. Gan, M. Liu, D. Sun, Carbon 111 (2017) 667-674.
DOI URL |
| [9] |
Y. Lian, M. Ni, Z. Huang, R. Chen, L. Zhou, W. Utetiwabo, W. Yang, Chem. Eng. J. 366 (2019) 313-320.
DOI URL |
| [10] |
N. Zhang, F. Liu, S.D. Xu, F.Y. Wang, Q. Yu, L. Liu, J. Mater. Chem. A 5 (2017) 22631-22640.
DOI URL |
| [11] |
Z. Li, Z. Xu, X. Tan, H. Wang, C.M.B. Holt, T. Stephenson, B.C. Olsen, D. Mitlin, Energy Environ. Sci. 6 (2013) 871-878.
DOI URL |
| [12] |
S. Zhang, L. Sui, H. Kang, H. Dong, L. Dong, L. Yu, Small 14 (2018), 1702570.
DOI URL |
| [13] |
H. Kang, L. Sui, Y. Wang, S. Zhang, H. Dong, L. Yu, L. Dong, J. Electrochim. Soc. 164 (2017) A2328-A2334.
DOI URL |
| [14] |
L. Ma, J. Liu, S. Lv, Q. Zhou, X. Shen, S. Mo, H. Tong, J. Mater. Chem. A 7 (2019) 7591-7603.
DOI URL |
| [15] |
B. Wang, L. Ji, Y. Yu, N. Wang, J. Wang, J. Zhao, Electrochim. Acta 309 (2019) 34-43.
DOI |
| [16] |
W. Yang, W. Yang, L. Kong, A. Song, X. Qin, G. Shao, Carbon 127 (2018) 557-567.
DOI URL |
| [17] |
B. Liang, K. Li, Y. Liu, X. Kang, Chem. Eng. J. 358 (2019) 1002-1011.
DOI URL |
| [18] |
J. Huang, Y. Liang, H. Hu, S. Liu, Y. Cai, H. Dong, M. Zheng, Y. Xiao, Y. Liu, J. Mater. Chem. A 5 (2017) 24775-24781.
DOI URL |
| [19] |
Q. Wu, G. Zhang, M. Gao, L. Huang, L. Li, S. Liu, C. Xie, Y. Zhang, S. Yu, J. Alloys. Compd. 786 (2019) 826-838.
DOI URL |
| [20] | N. Shang, S. Gao, X. Zhang, S. Zhang, C. Feng, Z. Wang, C. Wang, Energytechnol-GER 7 (2019), 1800641. |
| [21] |
Y. Ji, Y. Deng, H. Wu, Z. Tong, J. Appl. Electrochem. 49 (2019) 599-607.
DOI URL |
| [22] |
T. Budinova, E. Ekinci, F. Yardim, A. Grimm, E. Björnbom, V. Minkova, M. Goranova, Fuel Process. Technol. 87 (2006) 899-905.
DOI URL |
| [23] |
X. Zhao, S. Wang, Q. Wu, Electrochim. Acta 247 (2017) 1140-1146.
DOI URL |
| [24] |
J. Xu, L. Chen, H. Qu, Y. Jiao, J. Xie, G. Xing, Appl. Surf. Sci. 320 (2014) 674-680.
DOI URL |
| [25] |
A. Elmouwahidi, E. Bailón-García, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, F. Carrasco-Marín, Electrochim. Acta 229 (2017) 219-228.
DOI URL |
| [26] |
S. Yorgun, D. Yıldız, J. Taiwan. Inst. Chem. E. 53 (2015) 122-131.
DOI URL |
| [27] |
L. Wang, L. Rao, B. Xia, L. Wang, L. Yue, Y. Liang, H. DaCosta, X. Hu, Carbon 130 (2018) 31-40.
DOI URL |
| [28] |
Y. Zhang, L. Liu, P. Zhang, J. Wang, M. Xu, Q. Deng, Z. Zeng, S. Deng, Chem. Eng. J. 355 (2019) 309-319.
DOI |
| [29] |
S. Zhou, K. Chen, H. Quan, M. Su, Z. Zeng, M. Pan, D. Chen, L. Guo, J. Mater. Sci. 54 (2019) 9111-9123.
DOI URL |
| [30] |
D. Li, Y. Wang, J. Zhou, J. Wang, X. Liu, Y. Tian, Z. Zhang, Y. Qiao, L. Wei, J. Li, Mater. Lett. 230 (2018) 61-63.
DOI URL |
| [31] |
F. Liu, Y. Gao, C. Zhang, H. Huang, C. Yan, X. Chu, Z. Xu, Z. Wang, H. Zhang, X. Xiao, W. Yang, J. Colloid Interface Sci. 548 (2019) 322-332.
DOI URL |
| [32] |
X. Xu, A.E. Allah, C. Wang, H. Tan, A.A. Farghali, M.H. Khedr, V. Malgras, T. Yang, Y. Yamauchi, Chem. Eng. J. 362 (2019) 887-896.
DOI URL |
| [33] |
L. Sui, Y. Wang, Y. Yu, H. Dong, L. Dong, J. Electrochim. Soc. 163 (2016) E179-E184.
DOI URL |
| [34] |
J. Chang, Z. Gao, X. Liu, D. Wu, F. Xu, Y. Guo, Y. Guo, K. Jiang, Electrochim. Acta 213 (2016) 382-392.
DOI URL |
| [35] |
S. Zhang, L. Sui, H. Dong, W. He, L. Dong, L. Yu, ACS Appl. Mater. Inter. 10 (2018) 12983-12991.
DOI URL |
| [36] |
W. Yang, W. Yang, A. Song, L. Gao, L. Su, G. Shao, J. Power Sources 359 (2017) 556-567.
DOI URL |
| [37] |
J. Chen, H. Wei, H. Chen, W. Yao, H. Lin, S. Han, Electrochim. Acta 271 (2018) 49-57.
DOI URL |
| [38] |
L. Wang, Q. Zhu, J. Zhao, Y. Guan, J. Liu, Z. An, B. Xu, Microporous Mesoporous Mater. 279 (2019) 439-445.
DOI URL |
| [39] |
L. Wan, W. Wei, M. Xie, Y. Zhang, X. Li, R. Xiao, J. Chen, C. Du, Electrochim. Acta 311 (2019) 72-82.
DOI URL |
| [40] |
L. Wan, X. Li, N. Li, M. Xie, C. Du, Y. Zhang, J. Chen, J. Alloys. Compd. 790 (2019) 760-771.
DOI URL |
| [41] |
F. Wu, J. Gao, X. Zhai, M. Xie, Y. Sun, H. Kang, Q. Tian, H. Qiu, Carbon 147 (2019) 242-251.
DOI URL |
| [42] |
J. Guo, D. Wu, T. Wang, Y. Ma, Appl. Surf. Sci. 475 (2019) 56-66.
DOI URL |
| [43] |
Z. Wang, Y. Tan, Y. Yang, X. Zhao, Y. Liu, L. Niu, B. Tichnell, L. Kong, L. Kang, Z. Liu, F. Ran, J. Power Sources 378 (2018) 499-510.
DOI URL |
| [44] |
N. Wang, C. Wang, L. He, Y. Wang, W. Hu, S. Komarneni, Electrochim. Acta 298 (2019) 717-725.
DOI |
| [45] |
F. Liu, Z. Wang, H. Zhang, L. Jin, X. Chu, B. Gu, H. Huang, W. Yang, Carbon 149 (2019) 105-116.
DOI URL |
| [46] |
F. Hu, J. Wang, S. Hu, L. Li, G. Wang, J. Qiu, X. Jian, Nanoscale 8 (2016) 16323-16331.
DOI URL |
| [47] | L. Zhu, F. Shen, R. Smith, X. Qi, Energy technol-GER 5 (2017) 452-460. |
| [48] |
C. Huang, A.M. Puziy, O.I. Poddubnaya, D. Hulicova-Jurcakova, M. Sobiesiak, B. Gawdzik, Electrochim. Acta 270 (2018) 339-351.
DOI URL |
| [49] |
J.P. Paraknowitsch, A. Thomas, Energ. Environ. Sci. 6 (2013) 2839-2855.
DOI URL |
| [50] |
W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Energ. Environ. Sci. 7 (2014) 379-386.
DOI URL |
| [51] | L. Xie, G. Sun, X. Li, X. Huang, L. Wan, C. Lv, C. Chen, J. Mater. Chem. 4 (2016) 1637-1646. |
| [52] |
N. Mao, H. Wang, Y. Sui, Y. Cui, J. Pokrzywinski, J. Shi, W. Liu, S. Chen, X. Wang, D. Mitlin, Nano Res. 10 (2017) 1767-1783.
DOI URL |
| [53] |
L. Hu, L. Ma, Q. Zhu, L. Yu, Q. Wu, C. Hu, N. Qiao, B. Xu, New J. Chem. 41 (2017) 13611-13618.
DOI URL |
| [54] |
G. Li, Z. Yin, H. Guo, Z. Wang, G. Yan, Z. Yang, Y. Liu, X. Ji, J. Wang, Adv. Energy Mater. 9 (2018), 1802878.
DOI URL |
| [55] |
S. Liu, F. Hu, W. Shao, W. Zhang, T. Zhang, C. Song, M. Yao, H. Huang, X. Jian, Nano-Micro Lett. 12 (2020) 135.
DOI URL |
| [56] |
P. Cheng, S. Gao, P. Zang, X. Yang, Y. Bai, H. Xu, Z. Liu, Z. Lei, Carbon 93 (2015) 315-324.
DOI URL |
| [57] |
C.C. Kea, N. Zhang, F. Liu, Q. Yu, F.Y. Wang, L. Liu, R.L. Zhang, X. Liu, R.C. Zeng, Appl. Surf. Sci. 484 (2019) 716-725.
DOI URL |
| [58] |
W. Zhang, Z. Chen, X. Guo, K. Jin, Y. Wang, L. Li, Y. Zhang, Z. Wang, L. Sun, T. Zhang, Electrochim. Acta 278 (2018) 51-60.
DOI URL |
| [1] | Tao Hu, Jingjing Sun, Yifu Zhang, Yanyan Liu, Hanmei Jiang, Xueying Dong, Jiqi Zheng, Changgong Meng, Chi Huang. PVA-assisted hydrated vanadium pentoxide/reduced graphene oxide films for excellent Li+ and Zn2+ storage properties [J]. J. Mater. Sci. Technol., 2021, 83(0): 7-17. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
