J. Mater. Sci. Technol. ›› 2021, Vol. 69: 212-227.DOI: 10.1016/j.jmst.2020.08.032
• Invited Review • Previous Articles Next Articles
Lei Liua,1, Chao Wanga,*(),1, Zhenfeng Heb, Rajib Dase,f, Binbin Dongd,*(
), Xiaofeng Xiec,*(
), Zhanhu Guoe,*(
)
Received:
2020-06-07
Revised:
2020-06-29
Accepted:
2020-07-14
Published:
2021-04-10
Online:
2021-05-15
Contact:
Chao Wang,Binbin Dong,Xiaofeng Xie,Zhanhu Guo
About author:
zguo10@utk.edu (Z. Guo).1The authors contributed equally to this work.
Lei Liu, Chao Wang, Zhenfeng He, Rajib Das, Binbin Dong, Xiaofeng Xie, Zhanhu Guo. An overview of amphoteric ion exchange membranes for vanadium redox flow batteries[J]. J. Mater. Sci. Technol., 2021, 69: 212-227.
Membranes | Ion exchange capacity (mmol g-1) | Ion conductivity (mS cm-1)/Area resistance (Ω cm2) | Vanadium permeability (cm2 min-1) | CE (%) | VE (%) | EE (%) | Current density (mA cm-2) | Synthesis approaches |
---|---|---|---|---|---|---|---|---|
PVDF-g-PMAOEDMAC-co-PSSA [ | 1.2 | 54/- | 0.69 × 10-7 | - | - | - | - | Radiation-induced grafting method |
PE-Pore-filled membrane [ | 0.66 | -/0.51 | 0.83 × 10-9 | 98 | 90.8 | 89 | 50 | Co-polymerization method |
Nafion-g-PDMAEMA [ | - | 3.1/- | 2.95 × 10-7 | - | - | - | - | Blending method |
SPEEK-PBI [ | - | 0.44 | - | 98.5 | 91.2 | 89.8 | 80 | Blending method |
Nafion-g-PSSA [ | 0.80 | 63.8 | 13.6 × 10-7 | 96.2 | 94.0 | 89.6 | 40 | Blending method |
mSPAEK-6F-co-10 %BI [ | 1.56 | -/11.94 | 2.24 × 10-11 | 99.0 | 90.7 | 89.8 | 30 | Blending method |
S/GO-NH2-2 [ | 2.07 | -/0.154 | 2.04 × 10-7 | 97.2 | 92.1 | 89.5 | 50 | Blending method |
ImPSf/SPEEK-17 % [ | 2.04 | -/0.48 | 1.5 × 10-8 | 97.5 | 79.3 | 77.3 | 200 | Blending method |
PSf-MI-PS 190 % [ | 2.02 | 109/- | 7.9 × 10-9 | 98.9 | 78.3 | 77.4 | 200 | Blending method |
S/Q-15 [ | 1.553 | 47.37/0.158 | 1.5 × 10-7 | 96.1 | 92.04 | 88.45 | 50 | Blending method |
AMPBPip-70 [ | 4.19 | -/0.22 | 1.31 × 10-8 | 98.2 | 81.6 | 80.1 | 200 | Co-polymerization method |
Table 1 Performance comparison of various AIEMs.
Membranes | Ion exchange capacity (mmol g-1) | Ion conductivity (mS cm-1)/Area resistance (Ω cm2) | Vanadium permeability (cm2 min-1) | CE (%) | VE (%) | EE (%) | Current density (mA cm-2) | Synthesis approaches |
---|---|---|---|---|---|---|---|---|
PVDF-g-PMAOEDMAC-co-PSSA [ | 1.2 | 54/- | 0.69 × 10-7 | - | - | - | - | Radiation-induced grafting method |
PE-Pore-filled membrane [ | 0.66 | -/0.51 | 0.83 × 10-9 | 98 | 90.8 | 89 | 50 | Co-polymerization method |
Nafion-g-PDMAEMA [ | - | 3.1/- | 2.95 × 10-7 | - | - | - | - | Blending method |
SPEEK-PBI [ | - | 0.44 | - | 98.5 | 91.2 | 89.8 | 80 | Blending method |
Nafion-g-PSSA [ | 0.80 | 63.8 | 13.6 × 10-7 | 96.2 | 94.0 | 89.6 | 40 | Blending method |
mSPAEK-6F-co-10 %BI [ | 1.56 | -/11.94 | 2.24 × 10-11 | 99.0 | 90.7 | 89.8 | 30 | Blending method |
S/GO-NH2-2 [ | 2.07 | -/0.154 | 2.04 × 10-7 | 97.2 | 92.1 | 89.5 | 50 | Blending method |
ImPSf/SPEEK-17 % [ | 2.04 | -/0.48 | 1.5 × 10-8 | 97.5 | 79.3 | 77.3 | 200 | Blending method |
PSf-MI-PS 190 % [ | 2.02 | 109/- | 7.9 × 10-9 | 98.9 | 78.3 | 77.4 | 200 | Blending method |
S/Q-15 [ | 1.553 | 47.37/0.158 | 1.5 × 10-7 | 96.1 | 92.04 | 88.45 | 50 | Blending method |
AMPBPip-70 [ | 4.19 | -/0.22 | 1.31 × 10-8 | 98.2 | 81.6 | 80.1 | 200 | Co-polymerization method |
Fig. 5. Preparation route of partially fluorinated AIEMs. (a) ETFE/St/DMAEMA membrane. Modified from Ref. [77]. (b) PVDF/St/DMAEMA membrane. Modified from Ref. [78].
Fig. 7. Mobile ions associated with SAM-PEEK in acidic and basic media. eproduced with permission from Ref. [79]. Copyright ? Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2016.
Fig. 8. Chemical structure of polymer structures. (a) mSPAEK-6F-co-x%BI. Modified from ref [80]. (b) 60SPAEK-6F-co-x%BI in salted form. Modified from Ref. [81].
Fig. 9. Synthesis and preparation procedure of different blend membranes based on SPEEK. (a) SPEEK/PEI blend membranes. Modified from Ref. [91]. (b) SPEEK/QAPEI blend membranes. Modified from Ref. [68]. (c) SPEEK/PBI blend membrane. Modified from Ref. [99]. (d) SPEEK/ImPSf membranes. Modified from Ref. [101].
Characterization of AIEMs | Equation | Note |
---|---|---|
Water Uptake | $ \begin{array}{l}\text { Wu }=\frac{W_{\text {vet }}-W_{\mathrm{dx} \gamma}}{W_{\mathrm{drg}}} \times 100 \%\end{array}$ | Wwet and Wdry are membrane’s weight in the wet and dry state, respectively. |
Swelling Ratio | $ \begin{array}{l}\mathrm{Sr}=\frac{L_{\text {wret }}-L_{\text {dry }}}{L_{\text {dry }}} \times 100 \%\end{array}$ | Lwet and Ldry are membrane’s length in the wet and dry state, respectively. |
Ion Exchange Capacity (IEC) | $ \begin{array}{l}\text { IEC }=\frac{c_{\mathrm{Na}} \mathrm{OH} V_{\mathrm{Na}} O \mathrm{H}}{W_{\mathrm{dry}}}\end{array}$ | CNaOH and VNaOH are concentration and volume of NaOH aq, respectively. |
Oxidation Stability | $ Weightloss=\frac{Wbefore-Wafter}{ Wbefore }\times 100 \%$ | Wbefore and Wafter are the weight of dried membranes before and after immersing in Fenton’s reagent, respectively. |
Ion Conductivity | $σ=\frac{L}{ RS }$ | σ is ion conductivity of membranes, R is the resistances of simples, L and S are thickness and effective area, respectively. |
VO2+ Permeability | $V\frac{ dc(t)}{ dt } =A\frac{P}{L}[ c_{0}-c(t)] $ | V is the volume of mixed solution in the right reservoir; A and L is the effective area and thickness of membranes separately; P is the vanadium ion permeability; c0 is the VO2+ concentration in the right reservoir; c(t) is the VO2+ concentration in the left reservoir, which is a function of time. |
Table 2 Characterization of AIEMs and testing process.
Characterization of AIEMs | Equation | Note |
---|---|---|
Water Uptake | $ \begin{array}{l}\text { Wu }=\frac{W_{\text {vet }}-W_{\mathrm{dx} \gamma}}{W_{\mathrm{drg}}} \times 100 \%\end{array}$ | Wwet and Wdry are membrane’s weight in the wet and dry state, respectively. |
Swelling Ratio | $ \begin{array}{l}\mathrm{Sr}=\frac{L_{\text {wret }}-L_{\text {dry }}}{L_{\text {dry }}} \times 100 \%\end{array}$ | Lwet and Ldry are membrane’s length in the wet and dry state, respectively. |
Ion Exchange Capacity (IEC) | $ \begin{array}{l}\text { IEC }=\frac{c_{\mathrm{Na}} \mathrm{OH} V_{\mathrm{Na}} O \mathrm{H}}{W_{\mathrm{dry}}}\end{array}$ | CNaOH and VNaOH are concentration and volume of NaOH aq, respectively. |
Oxidation Stability | $ Weightloss=\frac{Wbefore-Wafter}{ Wbefore }\times 100 \%$ | Wbefore and Wafter are the weight of dried membranes before and after immersing in Fenton’s reagent, respectively. |
Ion Conductivity | $σ=\frac{L}{ RS }$ | σ is ion conductivity of membranes, R is the resistances of simples, L and S are thickness and effective area, respectively. |
VO2+ Permeability | $V\frac{ dc(t)}{ dt } =A\frac{P}{L}[ c_{0}-c(t)] $ | V is the volume of mixed solution in the right reservoir; A and L is the effective area and thickness of membranes separately; P is the vanadium ion permeability; c0 is the VO2+ concentration in the right reservoir; c(t) is the VO2+ concentration in the left reservoir, which is a function of time. |
Fig. 10. Preparation route of Nafion-g-PDMAEMA and protonated Nafion-g-PDMAEMA. Reproduced with permission from Ref. [120]. Copyright ? Elsevier Ltd. 2013.
Fig. 14. Schematic depiction of the preparation of organic/inorganic hybrid composite membranes. (a) Nafion/amino-SiO2 hybrid membrane. Reproduced with permission from Ref. [28]. Copyright ? Elsevier B. V. 2015. (b) SPEEK/GO-NH2 membranes. Reproduced with permission from Ref. [141]. Copyright ? Elsevier Ltd. 2017. (c) S/CNT@PDA MMM.
Fig. 15. Schematic diagram of the LbL self-assembly of PDDA/PSS bilayers on SPFEK. Reproduced with permission from Ref. [159]. Copyright ? The Royal Society of Chemistry 2013.
Fig. 16. Preparation and schematic principle of LbL/porous-SPFEK composite membrane. Reproduced with permission from Ref. [150]. Copyright ? Elsevier Ltd. 2014.
Fig. 18. Schematic illustration of the preparation of pore filled membranes. Reproduced with permission from Ref. [59]. Copyright ? The Royal Society of Chemistry 2011.
[1] |
M. Xia, D. Gu, G. Yu, D. Dai, H. Chen, Q. Shi, Sci. Bull. 61 (2016) 1013-1022.
DOI URL |
[2] |
A. Karabela, L.G. Zhao, J. Tong, N.J. Simms, J.R. Nicholls, M.C. Hardy, Mater. Sci. Eng. A 528 (2011) 6194-6202.
DOI URL |
[3] |
Q. Schiermeier, Nature 535 (2016) 212-213.
DOI PMID |
[4] |
B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928-935.
DOI URL |
[5] |
N. K.C.Nair, N. Garimella, Energy Build. 42 (2010) 2124-2130.
DOI URL |
[6] |
M.H. Chakrabarti, E. P.L.Roberts, C. Bae, M. Saleem, Energy Convers. Manage. 52 (2011) 2501-2508.
DOI URL |
[7] | N. Xu, X. Li, X. Zhao, J.B. Goodenough, K. Huang, Energy Environ. Sci. 4(2011). |
[8] |
S. Er, C. Suh, M.P. Marshak, A. Aspuru-Guzik, Chem. Sci. 6 (2015) 885-893.
DOI URL |
[9] |
A.S. Patil, V.D. Hiwarkar, P.K. Verma, R.K. Khatirkar, J. Alloys Compd. 777 (2019) 165-173.
DOI URL |
[10] | T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M.D. Hager, U.S. Schubert, Nature 534 (2016) 1-2. |
[11] | L. Wang, X. Xie, K.N. Dinh, Q. Yan, J. Ma, Chem. Rev. 397 (2019) 138-167. |
[12] |
F. Li, Q. Liu, J. Hu, Y. Feng, P. He, J. Ma, Nanoscale 11 (2019) 15418-15439.
DOI URL |
[13] |
L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang, Adv. Energy Mater. 1 (2011) 394-400.
DOI URL |
[14] |
Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, H. Peng, Chem. Rev. 115 (2015) 5159-5223.
DOI URL |
[15] |
Y. Yokota, T. Harada, K. Fukui, Chem. Commun. 46 (2010) 8627-8629.
DOI URL |
[16] |
P. Zhao, H. Zhang, H. Zhou, J. Chen, S. Gao, B. Yi, J. Power Sources 162 (2006) 1416-1420.
DOI URL |
[17] |
Q. Luo, L. Li, W. Wang, Z. Nie, X. Wei, B. Li, B. Chen, Z. Yang, V. Sprenkle, ChemSusChem 6 (2013) 268-274.
DOI URL |
[18] |
Y. Sedesheva, V. Ivanov, A. Wozniak, A. Yegorov, Orient. J. Chem. 32 (2016) 2283-2296.
DOI URL |
[19] |
C. Wang, Z. Feng, Y. Zhao, X. Li, W. Li, X. Xie, S. Wang, H. Hou, Int. J. Hydrogen Energy 42 (2017) 29988-29994.
DOI URL |
[20] |
D.Y. Hu, Y. Gao, F.C. Meng, J. Song, R.Q. Wang, Metall. Mater. Trans. A 49 (2018) 1397-1409.
DOI URL |
[21] |
F.A. Zakil, S.K. Kamarudin, S. Basri, Renew. Sustain. Energy Rev. 65 (2016) 841-852.
DOI URL |
[22] |
B. Jiang, L. Wu, L. Yu, X. Qiu, J. Xi, J. Membr. Sci. 510 (2016) 18-26.
DOI URL |
[23] |
X.H. Yan, R. Wu, J.B. Xu, Z. Luo, T.S. Zhao, J. Power Sources 311 (2016) 188-194.
DOI URL |
[24] |
C. Wang, B. Mo, Z. He, Q. Shao, D. Pan, E. Wujick, J. Guo, X. Xie, X. Xie, Z. Guo, J. Membr. Sci. 556 (2018) 118-125.
DOI URL |
[25] |
C. Wang, B. Mo, Z. He, X. Xie, C.X. Zhao, L. Zhang, Q. Shao, X. Guo, E.K. Wujcik, Z. Guo, Polymer 138 (2018) 363-368.
DOI URL |
[26] |
T. Xu, J. Membr. Sci. 263 (2005) 1-29.
DOI URL |
[27] |
J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, T. Xu, J. Membr. Sci. 522 (2017) 267-291.
DOI URL |
[28] |
C.H. Lin, M.C. Yang, H.J. Wei, J. Power Sources 282 (2015) 562-571.
DOI URL |
[29] |
J. Dai, Y. Dong, C. Yu, Y. Liu, X. Teng, J. Membr. Sci. 554 (2018) 324-330.
DOI URL |
[30] |
Q. Luo, H. Zhang, J. Chen, D. You, C. Sun, Y. Zhang, J. Membr. Sci. 325 (2008) 553-558.
DOI URL |
[31] |
A. Mahreni, A.B. Mohamad, A.A.H. Kadhum, W.R.W. Daud, S.E. Iyuke, J. Membr. Sci. 327 (2009) 32-40.
DOI URL |
[32] |
L. Kong, L. Zheng, R. Niu, H. Wang, H. Shi, RSC Adv. 6 (2016) 100262-100270.
DOI URL |
[33] |
L. Cao, Q. Sun, Y. Gao, L. Liu, H. Shi, Electrochim. Acta 158 (2015) 24-34.
DOI URL |
[34] |
X. Yang, Z. Wang, L. Shao, J. Membr. Sci. 549 (2018) 67-74.
DOI URL |
[35] |
S. Li, X. Jiang, X. Yang, Y. Bai, L. Shao, J. Membr. Sci. 570-571 (2019) 278-285.
DOI URL |
[36] |
X. Yang, L. Yan, F. Ran, A. Pal, J. Long, L. Shao, J. Membr. Sci. 576 (2019) 9-16.
DOI URL |
[37] |
M. Vijayakumar, Q. Luo, R. Lloyd, Z. Nie, X. Wei, B. Li, V. Sprenkle, J.D. Londono, M. Unlu, W. Wang, ACS Appl. Mater. Interfaces 8 (2016) 34327-34334.
DOI URL |
[38] |
P.Y. Xu, K. Zhou, G.L. Han, Q.G. Zhang, A.M. Zhu, Q.L. Liu, ACS Appl. Mater. Interfaces 6 (2014) 6776-6785.
DOI URL |
[39] |
Y. Li, H. Wu, Y. Yin, L. Cao, X. He, B. Shi, J. Li, M. Xu, Z. Jiang, J. Membr. Sci. 568 (2018) 1-9.
DOI URL |
[40] |
M.M. Hantel, V. Presser, R. Kötz, Y. Gogotsi, Electrochem. Commun. 13 (2011) 1221-1224.
DOI URL |
[41] |
J. Kim, S. Cheng, S. Oh, B. Logan, Environ. Sci. Technol. 41 (2007) 1004-1009.
DOI URL |
[42] |
C. Ponce de León, A. Frías-Ferrer, J. González-García, D.A. Szánto, F.C. Walsh, J. Power Sources 160 (2006) 716-732.
DOI URL |
[43] |
A. Chamanfar, L. Sarrata, M. Jahazi, M. Asadi, A. Weck, A.K. Koulc, Mater. Des. 52 (2013) 791-800.
DOI URL |
[44] |
B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, Z. Yang, ChemSusChem 4 (2011) 1388-1406.
PMID |
[45] |
L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Carbon 48 (2010) 3079-3090.
DOI URL |
[46] |
W.H. Wang, X.D. Wang, Electrochim. Acta 52 (2007) 6755-6762.
DOI URL |
[47] |
J. Zhang, L. Li, Z. Nie, B. Chen, M. Vijayakumar, S. Kim, W. Wang, B. Schwenzer, J. Liu, Z. Yang, J. Appl. Electrochem. 41 (2011) 1215-1221.
DOI URL |
[48] |
M. Skyllas-Kazacos, M. Kazacos, J. Power Sources 196 (2011) 8822-8827.
DOI URL |
[49] |
P. Han, H. Wang, Z. Liu, X. Chen, W. Ma, J. Yao, Y. Zhu, G. Cui, Carbon 49 (2011) 693-700.
DOI URL |
[50] |
M. Skyllas-Kazacos, L. Cao, M. Kazacos, N. Kausar, A. Mousa, ChemSusChem 9 (2016) 1521-1543.
DOI PMID |
[51] |
C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H.Y. Jung, J.H. Yang, H.T. Kim, Renew. Sustain. Energy Rev. 69 (2017) 263-274.
DOI URL |
[52] |
L. Cao, M. Skyllas-Kazacos, C. Menictas, J. Noack, J. Energy Chem. 27 (2018) 1269-1291.
DOI URL |
[53] | D.G. Kwabi, Y. Ji, M.J. Aziz, Chem. Rev. (2020) 6467-6489. |
[54] |
E. Mena, R. López-Vizcaíno, M. Millán, P. Ca˜nizares, J. Lobato, M.A. Rodrigo, Int. J. Energy Res. 42 (2018) 720-730.
DOI URL |
[55] |
B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928-935.
DOI URL |
[56] |
T. Mohammadi, M. Skyllas-Kazacos, J. Power Sources 56 (1995) 91-96.
DOI URL |
[57] |
A.Z. Weber, M.M. Mench, J.P. Meyers, P.N. Ross, J.T. Gostick, Q. Liu, J. Appl. Electrochem. 41 (2011) 1137-1164.
DOI URL |
[58] |
C. Ding, H. Zhang, X. Li, T. Liu, F. Xing, J. Phys. Chem. Lett. 4 (2013) 1281-1294.
DOI URL |
[59] |
X. Li, H. Zhang, Z. Mai, H. Zhang, I. Vankelecom, Energy Environ. Sci. 4 (2011) 1147-1160.
DOI URL |
[60] | Z. Liu, H. Zhang, S. Gao, X. Ma, Y. Liu, Energy Storage Sci. Technol. 3 (2014) 71-77. |
[61] | F. Abe, K. Osakada, M. Shiomi, A. Uematsu, M. Matsumoto, J. Mater. Process. Technol. 1 (2001) 210-213. |
[62] |
C. Jia, J. Liu, C. Yan, J. Power Sources 195 (2010) 4380-4383.
DOI URL |
[63] |
W. Liu, F. Jiang, Scr. Mater. 37 (1997) 59-64.
DOI URL |
[64] |
S.C. Price, X. Ren, A.M. Savage, F.L. Beyer, Polym. Chem. 8 (2017) 5708-5717.
DOI URL |
[65] |
D.W. Shin, M.D. Guiver, Y.M. Lee, Chem. Rev. 117 (2017) 4759-4805.
DOI URL |
[66] |
H. Wang, X. Li, X. Zhuang, B. Cheng, W. Wang, W. Kang, L. Shi, H. Li, J. Power Sources 340 (2017) 201-209.
DOI URL |
[67] |
W. Liu, F. Xiao, M. Yao, J. Mater, Sci. Lett. 16 (1997) 769-771.
DOI URL |
[68] |
S. Liu, L. Wang, D. Li, B. Liu, J. Wang, Y. Song, J. Mater. Chem. A 3 (2015) 17590-17597.
DOI URL |
[69] |
K. Ueno, M. Kasuya, M. Watanabe, M. Mizukami, K. Kurihara, Phys. Chem. Chem. Phys. 12 (2010) 4066-4071.
DOI URL |
[70] |
J. Ye, X. Lou, C. Wu, S. Wu, M. Ding, L. Sun, C. Jia, Front. Chem. 6 (2018) 549.
DOI URL |
[71] |
O. Nibel, T. Rojek, T.J. Schmidt, L. Gubler, ChemSusChem 10 (2017) 2767-2777.
DOI PMID |
[72] |
M. Nofz, I. Dorfel, R. Sojref, R.S. Neumann, Oxid. Met. 91 (2019) 395-416.
DOI |
[73] |
Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, Prog. Polym. Sci. 34 (2009) 449-477.
DOI URL |
[74] |
V. Mannava, A. SambasivaRao, M. Kamaraj, R.S. Kottada, J. Mater. Eng. Perform. 28 (2019) 1077-1093.
DOI URL |
[75] |
H.S. Park, Y.J. Kim, W.H. Hong, H.K. Lee, J. Membr. Sci. 272 (2006) 28-36.
DOI URL |
[76] |
X. Yan, C. Zhang, Z. Dong, B. Jiang, Y. Dai, X. Wu, G. He, ACS Appl. Mater. Interfaces 10 (2018) 32247-32255.
DOI URL |
[77] |
J. Qiu, M. Zhai, J. Chen, Y. Wang, J. Peng, L. Xu, J. Li, G. Wei, J. Membr. Sci. 342 (2009) 215-220.
DOI URL |
[78] |
J. Qiu, J. Zhang, J. Chen, J. Peng, L. Xu, M. Zhai, J. Li, G. Wei, J. Membr. Sci. 334 (2009) 9-15.
DOI URL |
[79] |
R. Narducci, L. Pasquini, J.-F. Chailan, P. Knauth, M.L. Di Vona, ChemPlusChem 81 (2016) 550-556.
DOI URL |
[80] |
J.B. Liao, M.Z. Lu, Y.Q. Chu, J.L. Wang, J. Power Sources 282 (2015) 241-247.
DOI URL |
[81] |
J. Liao, Y. Chu, Q. Zhang, K. Wu, J. Tang, M. Lu, J. Wang, Electrochim. Acta 258 (2017) 360-370.
DOI URL |
[82] |
W. Wei, H. Zhang, X. Li, Z. Mai, H. Zhang, J. Power Sources 208 (2012) 421-425.
DOI URL |
[83] |
M. Yue, Y. Zhang, L. Wang, Solid State Ion. 217 (2012) 6-12.
DOI URL |
[84] |
J. Wang, J. Liao, L. Yang, S. Zhang, X. Huang, J. Ji, J. Membr. Sci. 415-416 (2012) 644-653.
DOI URL |
[85] |
J. Kerres, C.M. Tang, C.. Graf Ind, Eng. Chem. Res. 43 (2004) 4571-4579.
DOI URL |
[86] |
X. Zhang, T. Dong, Y. Pu, T. Higashihara, M. Ueda, L. Wang, J. Phys. Chem. C 119 (2015) 19596-19606.
DOI URL |
[87] |
Q. Zhang, B. Liu, W. Hu, W. Xu, Z. Jiang, W. Xing, M.D. Guiver, J. Membr. Sci. 428 (2013) 629-638.
DOI URL |
[88] | J. Wang, G. He, X. Wu, X. Yan, Y. Zhang, Y. Wang, L. Du, J. Membr, Sci. 459 (2014) 86-95. |
[89] | J. Kerres, Covalent-Ionically Fuel Cells, 6 2006, pp. 251-260. |
[90] |
W. Zhang, V. Gogel, K.A. Friedrich, J. Kerres, J. Power Sources 155 (2006) 3-12.
DOI URL |
[91] |
S. Liu, L. Wang, Y. Ding, B. Liu, X. Han, Y. Song, Electrochim. Acta 130 (2014) 90-96.
DOI URL |
[92] |
Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, Prog. Polym. Sci. 34 (2009) 449-477.
DOI URL |
[93] |
H. Zhang, X. Yan, L. Gao, L. Hu, X. Ruan, W. Zheng, G. He, ACS Appl. Mater. Interfaces 11 (2019) 5003-5014.
DOI URL |
[94] |
D. Chen, X. Chen, L. Ding, X. Li, J. Membr. Sci. 553 (2018) 25-31.
DOI URL |
[95] |
J. Wang, Y. He, L. Zhao, Y. Li, S. Cao, B. Zhang, H. Zhang, J. Membr. Sci. 482 (2015) 1-12.
DOI URL |
[96] |
Y. He, J. Wang, H. Zhang, T. Zhang, B. Zhang, S. Cao, J. Liu, J. Mater. Chem. A 2 (2014) 9548-9558.
DOI URL |
[97] |
L. Cao, Q. Sun, Y. Gao, L. Liu, H. Shi, Electrochim. Acta 158 (2015) 24-34.
DOI URL |
[98] |
H.Y. Jung, M.S. Cho, T. Sadhasivam, J.Y. Kim, S.H. Roh, Y. Kwon, Solid State Ion. 324 (2018) 69-76.
DOI URL |
[99] |
D. Chen, X. Chen, L. Ding, X. Li, J. Membr. Sci. 553 (2018) 25-31.
DOI URL |
[100] |
L. Wang, Z. Zeng, W. Gao, T. Maxson, D. Raciti, M. Giroux, X. Pan, C. Wang, J. Greeley, Science 363 (2019) 870-874.
DOI URL |
[101] |
X. Yan, C. Zhang, Y. Dai, W. Zheng, X. Ruan, G. He, J. Membr. Sci. 544 (2017) 98-107.
DOI URL |
[102] |
F. Chu, X. Chu, T. Lv, Z. Chen, Y. Ren, S. Zhang, N. Yuan, B. Lin, J. Ding, ChemElectroChem 6 (2019) 5041-5050.
DOI URL |
[103] | H. Vogel, C.S. Marvel, J. Polym. Sci. Polym. Lett. Ed. (1961) 511-539. |
[104] |
C.J. Lefaux, B.S. Kim, N. Venkat, P.T. Mather, ACS Appl. Mater. Interfaces 7 (2015) 10365-10373.
DOI URL |
[105] |
H. Bai, W.S.W. Ho, Ind. Eng. Chem. Res. 48 (2009) 2344-2354.
DOI URL |
[106] |
R. Bouchet, E. Siebert, Solid State Ion. 118 (1999) 287-299.
DOI URL |
[107] |
J.A. Asensio, S. Borrós, P. Gómez-Romero, J. Polym. Sci. Part A-Polym. Chem. 40 (2002) 3703-3710.
DOI URL |
[108] |
J.A. Mader, B.C. Benicewicz, Macromolecules 43 (2010) 6706-6715.
DOI URL |
[109] |
X.L. Zhou, T.S. Zhao, L. An, L. Wei, C. Zhang, Electrochim. Acta 153 (2015) 492-498.
DOI URL |
[110] |
Z. Xia, L. Ying, J. Fang, Y.Y. Du, W.M. Zhang, X. Guo, J. Yin, J. Membr. Sci. 525 (2017) 229-239.
DOI URL |
[111] |
L. Sheng, H. Xu, X. Guo, J. Fang, L. Fang, J. Yin, J. Power Sources 196 (2011) 3039-3047.
DOI URL |
[112] |
H. Xu, K. Chen, X. Guo, J. Fang, J. Yin, Polymer 48 (2007) 5556-5564.
DOI URL |
[113] |
X. Che, H. Zhao, X. Ren, D. Zhang, H. Wei, J. Liu, X. Zhang, J. Yang, J. Membr. Sci. 611 (2020) 118359-118368.
DOI URL |
[114] |
X. Ren, L. Zhao, X. Che, Y. Cai, Y. Li, H. Li, H. Chen, H. He, J. Liu, J. Yang, J. Power Sources 457 (2020) 228037-228048.
DOI URL |
[115] |
N. Xu, X. Guo, J. Fang, H. Xu, J. Yin, J. Polym. Sci. Part A-Polym. Chem. 47 (2009) 6992-7002.
DOI URL |
[116] |
H. Wang, S.G. Bi, Y.S. Ye, Y. Xue, X.L. Xie, Y.W. Mai, Nanoscale 7 (2015) 3548-3557.
DOI PMID |
[117] |
J. Zhang, J. Gao, Q. Song, Z. Guo, A. Chen, G. Chen, S. Zhou, Electrochim. Acta 199 (2016) 70-79.
DOI URL |
[118] |
X. Wang, M. Wang, Y.X. Jia, B.B. Wang, Electrochim. Acta 174 (2015) 1113-1121.
DOI URL |
[119] |
Z. Mai, H. Zhang, X. Li, S. Xiao, H. Zhang, J. Power Sources 196 (2011) 5737-5741.
DOI URL |
[120] |
J. Ma, S. Wang, J. Peng, J. Yuan, C. Yu, J. Li, X. Ju, M. Zhai, Eur. Polym. J. 49 (2013) 1832-1840.
DOI URL |
[121] |
J. Chen, M. Asano, Y. Maekawa, T. Sakamura, H. Kubota, M. Yoshida, J. Membr. Sci. 283 (2006) 373-379.
DOI URL |
[122] |
J. Chen, M. Asano, T. Yamaki, M. Yoshida, J. Membr. Sci. 269 (2006) 194-204.
DOI URL |
[123] |
G. Hu, Y. Wang, J. Ma, J. Qiu, J. Peng, J. Li, M. Zhai, J. Membr. Sci. 407-408 (2012) 184-192.
DOI URL |
[124] |
J. Ma, Y. Wang, J. Peng, J. Qiu, L. Xu, J. Li, M. Zhai, J. Membr. Sci. 419-420 (2012) 1-8.
DOI URL |
[125] |
T. Sherazi, S. Ahmad, M. Kashmiri, M. Guiver, J. Membr. Sci. 325 (2008) 964-972.
DOI URL |
[126] |
F.J. Oldenburg, T.J. Schmidt, L. Gubler, J. Power Sources 368 (2017) 68-72.
DOI URL |
[127] |
R. Gan, Y. Ma, S. Li, F. Zhang, G. He, J. Energy Chem. 27 (2018) 1189-1197.
DOI URL |
[128] |
C. Teng, H. Xiao, Q. Cai, J. Tang, T. Cai, Q. Deng, J. Solid State Chem. 243 (2016) 146-153.
DOI URL |
[129] |
P. Lin, Y. Cong, C. Sun, B. Zhang, Nanoscale 8 (2016) 2403-2411.
DOI URL |
[130] |
S. Saha, P. Samanta, N. Chandra Murmu, T. Kuila, Phys. Chem. Chem. Phys. 19 (2017) 28588-28595.
DOI URL |
[131] |
A. Kaushik, R. Kumar, S.K. Arya, M. Nair, B.D. Malhotra, S. Bhansali, Chem. Rev. 115 (2015) 4571-4606.
DOI URL |
[132] |
G. Lazzara, G. Cavallaro, A. Panchal, R. Fakhrullin, A. Stavitskaya, V. Vinokurov, Y. Lvov, Curr. Opin. Colloid Interface Sci. 35 (2018) 42-50.
DOI URL |
[133] |
N. De Vietro, A. Conte, A.L. Incoronato, M.A.Del Nobile, F. Fracassi, Innov. Food Sci. Emerg. Technol. 41 (2017) 130-134.
DOI URL |
[134] |
J. Dai, T. Zhang, H. Zhao, T. Fei, Sens. Actuator B-Chem. 242 (2017) 1108-1114.
DOI URL |
[135] |
F. Huang, A. Tahmasbi Rad, W. Zheng, M.P. Nieh, C.J. Cornelius, Polymer 108 (2017) 105-120.
DOI URL |
[136] |
D. Zhan, Z. Ni, W. Chen, L. Sun, Z. Luo, L. Lai, T. Yu, A.T.S. Wee, Z. Shen, Carbon 49 (2011) 1362-1366.
DOI URL |
[137] |
D.W. Lee, L. De Los Santos V, J.W. Seo, L. Leon Felix, D. Bustamante, J.M. Cole, C.H.W. Barnes, J. Phys. Chem. B 114 (2010) 5723-5728.
DOI PMID |
[138] |
X. Zhang, X. Ji, R. Su, B.L. Weeks, Z. Zhang, S. Deng, ChemPlusChem 78 (2013) 703-711.
DOI PMID |
[139] |
X. Zhang, W.M. Hikal, Y. Zhang, S.K. Bhattacharia, L. Li, S. Panditrao, S. Wang, B.L. Weeks, Appl. Phys. Lett. 102 (2013), 141905.
DOI URL |
[140] |
X. Zhang, K.S. Ziemer, K. Zhang, D. Ramirez, L. Li, S. Wang, L.J. Hope-Weeks, B.L. Weeks, ACS Appl. Mater. Interfaces 7 (2015) 1057-1064.
DOI URL |
[141] |
S. Liu, D. Li, L. Wang, H. Yang, X. Han, B. Liu, Electrochim. Acta 230 (2017) 204-211.
DOI URL |
[142] |
C. Jia, Y. Cheng, X. Ling, G. Wei, J. Liu, C. Yan, Electrochim. Acta 153 (2015) 44-48.
DOI URL |
[143] |
B.P. Tripathi, M. Schieda, V.K. Shahi, S.P. Nunes, J. Power Sources 196 (2011) 911-919.
DOI URL |
[144] |
D. Manikandan, R.V. Mangalaraja, R.E. Avila, R. Siddheswaran, S. Ananthakumar, Mater. Sci. Eng. B 177 (2012) 614-618.
DOI URL |
[145] |
L. Yu, F. Lin, W. Xiao, D. Luo, J. Xi, J. Membr. Sci. 549 (2018) 411-419.
DOI URL |
[146] |
J.J. Richardson, J. Cui, M. Bjornmalm, J.A. Braunger, H. Ejima, F. Caruso, Chem. Rev. 116 (2016) 14828-14867.
DOI URL |
[147] |
T. Lee, S.H. Min, M. Gu, Y.K. Jung, W. Lee, J.U. Lee, D.G. Seong, B.S. Kim, Chem. Mater. 27 (2015) 3785-3796.
DOI URL |
[148] |
X. Zhang, Y. Xu, X. Zhang, H. Wu, J. Shen, R. Chen, Y. Xiong, J. Li, S. Guo, Prog. Polym. Sci. 89 (2019) 76-107.
DOI URL |
[149] |
R.T. Holt, W. Wallace, Int. Mater. Rev. 21 (1976) 1-24.
DOI URL |
[150] |
Y. Wang, S. Wang, M. Xiao, D. Han, Y. Meng, Int. J. Hydrog. Energy 39 (2014) 16088-16095.
DOI URL |
[151] |
Y. Wang, S. Wang, M. Xiao, S. Song, D. Han, M.A. Hickner, Y. Meng, Int. J. Hydrog. Energy 39 (2014) 16123-16131.
DOI URL |
[152] |
T. Yamaguchi, F. Miyata, S. Nakao, Adv. Mater. 15 (2003) 1198-1201.
DOI URL |
[153] |
S.J. Seo, B.C. Kim, K.W. Sung, J. Shim, J.D. Jeon, K.H. Shin, S.H. Shin, S.H. Yun, J.Y. Lee, S.H. Moon, J. Membr. Sci. 428 (2013) 17-23.
DOI URL |
[154] |
T. Yamaguchi, F. Miyata, S.I. Nakao, J. Membr. Sci. 214 (2003) 283-292.
DOI URL |
[155] |
T. Yamaguchi, H. Kuroki, F. Miyata, Electrochem. Commun. 7 (2005) 730-734.
DOI URL |
[156] |
T. Yamaguchi, H. Zhou, S. Nakazawa, N. Hara, Adv. Mater. 19 (2007) 592-596.
DOI URL |
[157] |
M.S. Lee, H.G. Kang, J.D. Jeon, Y.W. Choi, Y.G. Yoon, RSC Adv. 6 (2016) 63023-63029.
DOI URL |
[158] |
P.P. Sharma, A. Paul, D.N. Srivastava, V. Kulshrestha, ACS Omega 3 (2018) 9872-9879.
DOI PMID |
[159] |
Y. Wang, S. Wang, M. Xiao, S. Han, M. Hickner, Y. Meng, RSC Adv. 3 (2013) 15467-15547.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||