Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (11): 2197-2204    DOI: 10.1016/j.jmst.2018.04.008
Orginal Article Current Issue | Archive | Adv Search |
Enhanced efficiency of graphene-silicon Schottky junction solar cell through inverted pyramid arrays texturation
Jiajia Qiua, Yudong Shangc, Xiuhua Chenc, Shaoyuan Liab*(), Wenhui Maab, Xiaohan Wanb, Jia Yangab, Yun Leiab, Zhengjie Chenb
a State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
b Institute of New Energy/Silicon Metallurgy and Silicon Material Engineering Research Center of Universities in Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
c Faculty of Physical Science and Technology, Yunnan University, Kunming 650091, China
Download:  HTML  PDF 
Export:  BibTeX | EndNote (RIS)      

Nanostructures of silicon are gradually becoming hot candidate due to outstanding capability for trapping light and improving conversion efficiency of solar cell. In this paper, silicon nanowires (SiNWs) and silicon inverted pyramid arrays (SiIPs) were introduced on surface of Gr-Si solar cell through silver and copper-catalyzed chemical etching, respectively. The effects of SiNWs and SiIPs on carrier lifetime, optical properties and efficiency of Gr-SiNWs and Gr-SiIPs solar cells were systematically analyzed. The results show that the inverted pyramid arrays have more excellent ability for balancing antireflectance loss and surface area enlargement. The power conversion efficiency (PCE) and carrier lifetime of Gr-SiIPs devices respectively increase by 62% and 34% by comparing with that of Gr-SiNWs solar cells. Finally, the Gr-SiIPs cell with PCE of 5.63% was successfully achieved through nitric acid doping. This work proposes a new strategy to introduce the inverted pyramid arrays for improving the performance of Gr-Si solar cells.

Key words:  Graphene-Si solar cell      Silver/copper-assisted chemical etching      Silicon nanowires      Silicon inverted pyramid arrays     
Received:  07 August 2017      Published:  26 November 2018
Corresponding Authors:  Li Shaoyuan     E-mail:

Cite this article: 

Jiajia Qiu, Yudong Shang, Xiuhua Chen, Shaoyuan Li, Wenhui Ma, Xiaohan Wan, Jia Yang, Yun Lei, Zhengjie Chen. Enhanced efficiency of graphene-silicon Schottky junction solar cell through inverted pyramid arrays texturation. J. Mater. Sci. Technol., 2018, 34(11): 2197-2204.

URL:     OR

Fig. 1.  Schematic illustration for fabrication of Gr-SiNWs and Gr-SiIPs Schottky junction solar cell.
Fig. 2.  (a) SEM diagram of graphene; (b) Raman spectrum of graphene measured on SiO2/Si substrate.
Fig. 3.  Cross-sectional SEM image of (a) 1 μm, (b) 3 μm, (c) 6 μm and (d) 10 μm Silicon nanowires.
Fig. 4.  (a) Reflectance and (b) absorbance of silicon nanowires with different lengths.
Fig. 5.  (a) Illuminates J-V characteristics curves. (b) Dark J-V characteristics curves. (c) Dark lnJ-V curves. (d) Plots of dV/d(lnI) versus I for Gr-SiNWs Schottky junction solar cell.
SiNWs Voc (V) Jsc (mA/cm2) FF (%) PCE (%) n Φ Rs
1 μm 0.32 31.53 21.7 2.16 3.92 0.72 37.04
3 μm 0.32 28.98 19.5 1.78 5.03 0.73 51.89
6 μm 0.34 22.94 16.7 1.29 5.38 0.74 62.96
10 μm 0.27 11.62 21.2 0.67 5.52 0.75 65.09
Table 1  Performance parameters of Gr-SiNWs Schottky junction solar cells.
Fig. 6.  Top view and cross-sectional SEM image of (a) 1 μm and (b) 10 μm silicon nanowires.
Fig. 7.  Minority carrier lifetimes of silicon nanowires with different lengths.
Fig. 8.  SEM to p-view image and cross-sectional SEM image of SiIPs solar cells.
Fig. 9.  Comparison of (a) reflectance and (b) absorbance of SiIPs and SiNWs.
Fig. 10.  (a) Illuminated J-V characteristics curves. (b) Dark J-V characteristics curves. (c) The dark lnJ-V curves. (d) Plots of dV/d(lnI) versus I for Gr-SiNWs and Gr-SiNWs Schottky junction solar cell.
Voc (V) Jsc (mA/cm2) FF (%) PCE (%) n Φ Rs
SiNWs 0.32 31.53 21.7 2.16 3.92 0.72 37.04
SiIPs 0.35 36.75 27.4 3.50 4.08 0.75 23.72
Table 2  Performance parameters of Gr-SiNWs (1 μm) and Gr-SiIPs Schottky junction solar cells.
Fig. 11.  SEM image of (a) Gr-SiNWs and (b) Gr-SiIPs Schottky junction solar cells.
Fig. 12.  Comparison of minority carrier lifetime of planar Si, SiNWs (1 μm, with CH3 passivation) and SiIPs solar cells.
Fig. 13.  Illuminated J-V characteristics curves of HNO3 doped Gr-SiNWs (1 μm, with CH3 passivation) and Gr-SiIPs Schottky junction solar cell.
[1] M. Halabi, A. Al-Qattan, A. Al-Otaibi, Renew. Sustain. Energy Rev. 43(2015)296-314.
doi: 10.1016/j.rser.2014.11.030
[2] X. Luan, Y. Wang, J. Mater. Sci.Technol. 30(2014) 1-7.
[3] D.M. Powell, M.T. Winkler, H.J. Choi, C.B. Simmons, D. Berney Needleman, T.Buonassisi, Energy Environ. Sci. 5(2012) 5874-5883.
doi: 10.1039/c2ee03489a
[4] K. Ruan, K. Ding, Y. Wang, S. Diao, Z. Shao, X. Zhang, J. Jie, J. Mater. Chem. A 3(2015) 14370-14377.
[5] X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, D. Wu, Adv. Mater.22(2010) 2743-2748.
doi: 10.1002/adma.200904383 pmid: 20379996
[6] H. Liu, Y. Liu, D. Zhu, J. Mater. Chem. 21(2011) 3335-3345.
doi: 10.1039/C0JM02922J
[7] E. Shi, H. Li, L. Yang, L. Zhang, Z. Li, P. Li, Y. Shang, S. Wu, X. Li, J. Wei, K. Wang,H. Zhu, D. Wu, Y. Fang, A. Cao, Nano Lett. 13(2013) 1776-1781.
doi: 10.1021/nl400353f pmid: 23517083
[8] K.H. Tsui, Q.F. Lin, H.T. Chou, Q.P. Zhang, H.Y. Fu, P.F. Qi, Z.Y. Fan, Adv. Mater.26(2014) 2805-2811.
doi: 10.1002/adma.201304938 pmid: 24448979
[9] Y.J. Hung, S.L. Lee, Sol. Energy Mater. Sol. C 130 (2014) 573-581.
[10] X. Yu, L. Yang, Q. Lv, M. Xu, H. Chen, D. Yang, Nanoscale 7 (2015)7072-7077.
[11] G. Fan, H. Zhu, K. Wang, J. Wei, X. Li, Q. Shu, N. Guo, D. Wu, ACS Appl. Mater.Interfaces 3 (2011) 721-725.
[12] T. Feng, D. Xie, Y. Lin, Y. Zang, T. Ren, Appl. Phys. Lett. 99(2011) 666.
[13] K.X. Wang, Z.F. Yu, V. Liu, Y. Cui, S.H. Fan, Nano Lett. 12(2012)1616-1619.
doi: 10.1021/nl204550q pmid: 22356436
[14] J. Oh, H.C. Yuan, H.M. Branz, Nat. Nanotechnol. 7(2012) 743-748.
doi: 10.1038/nnano.2012.166
[15] S.E. Han, G. Chen, Nano Lett. 10(2010) 1012.
doi: 10.1021/nl904187m pmid: 20141156
[16] L. Liu, M. Qing, Y. Wang, S. Chen, J. Mater. Sci.Technol. 31(2015) 599-606.
[17] S.Y. Li, W.H. Ma, Appl. Surf. Sci. 369(2016) 232-240.
doi: 10.1016/j.apsusc.2016.02.028
[18] S.Y. Li, W.H. Ma, J. Solid State Chem. 213(2014) 242-249.
doi: 10.1016/j.jssc.2014.02.037
[19] A. Mavrokefalos, S.E. Han, S. Yerci, M.S. Branham, G. Chen, Nano Lett. 12(2012) 2792.
doi: 10.1021/nl2045777 pmid: 22612694
[20] A.W. Smith, A. Rohatgi, Sol. Energy Mater. Sol. C 29 (1993) 37-49.
[21] J. Zhao, A. Wang, M.A. Green, Sol. Energy Mater. Sol. C 66 (2001) 27-36.
[22] Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Small 8 (2012) 1392-1397.
[23] Y. Song, X. Li, C. Mackin, Nano Lett. 15(2015) 2104.
doi: 10.1021/nl505011f pmid: 25685934
[24] O.L. Muskens, J.G. Rivas, R.E. Algra, E.P.A.M. Bakkers, A. Lagendijk, Nano Lett. 8(2008) 2638.
doi: 10.1021/nl0808076 pmid: 18700806
[25] Y. Kurokawa, M. Yano, S. Miyajima, A. Yamada, Jpn. J. Appl. Phys. 56 (2017)04CS03.
[26] S.M. Sze, K.K. Ng, NewYork, 1981.
[27] S. Tongay, M. Lemaitre, X. Miao, B. Gila, B.R. Appleton, A.F. Hebard, Phys. Rev.X 2 (2012) 1-9.
[28] M.A. Lachiheb, M. Zrir, N. Nafie, O. Abbes, J. Yakoubi, M. Bouaïcha, Sol. Energy110(2014) 673-683.
[29] J.Y. Jung, Z. Guo, S.W. Jee, H.D. Um, K.T. Park, J.H. Lee, Opt. Express 18 (2010)286-292.
[30] Y. Wang, Li. Yang, Y. Liu, Z. Mei, W. Chen, J. Li, H. Liang, A. Kuznetsov, X. Du,Sci. Rep.(UK) 5(2015) 10843.
[31] H. Seidel, L. Csepregi, A. Heuberger, H. Baumgärtel, J. Electrochem. Soc. 137(1990) 3612-3626.
doi: 10.1149/1.2086277
[32] P.J. Hesketh, C. Ju, S. Gowda, E. Zanoria, S. Danyluk, J. Electrochem. Soc. 140(1993) 1080-1085.
doi: 10.1149/1.2056201
[33] G. Zhang, NewYork, 2001.
[34] N. Alderman, L. Danos, M.C. Grossel, T. Markvart, RSC Adv. 2(2012)7669-7672.
doi: 10.1039/c2ra20465g
[35] F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, B.Q. Sun, ACS Appl. Mater. Interfaces5(2013) 4678-4684.
[36] S. Maldonado, D. Knapp, N.S. Lewis, J. Am. Chem.Soc. 130(2008) 3300-3301.
[37] A. Bansal, X. Li, A.I. Lauermann, N.S. Lewis, I. Yisang, W.H. Weinberg, J. Am.Chem. Soc. 118 (30) (2018) 7225-7226.
[38] Y. Itoh, B. Kim, R.I. Gearba, N.J. Tremblay, R. Pindak, Y. Matsuo, Chem. Mater.23(2011) 970-975.
doi: 10.1021/cm1025975
No related articles found!
[1] Sangwon Lee, Bonggyu Park, Yongho Park, Ikmin Park. Effect of Sn on the Microstructure and Mechanical Properties of Mg-5Al-2Si Alloys[J]. J Mater Sci Technol, 2008, 24(03): 296 -298 .
[2] Dong CHEN, Yongping LEI, Xiaoyan LI, Yaowu SHI, Zhiling TIAN. Three Dimension Monte Carlo Simulation of Austenite Grain Growth in CGHAZ of an Ultrafine Grain Steel[J]. J Mater Sci Technol, 2003, 19(04): 309 -312 .
[3] M.G.Abd El Wahed, S.Abd El Wanees, M.El Gamel, S.Abd El Haleem. Physical Studies of Some Hydrazinobenzoic Acid Complexes[J]. J Mater Sci Technol, 2005, 21(01): 140 -144 .
[4] Weimin MAO, Dong LI, Yongning YU. Influence of Surface Oxide Films on Elastic Behaviors of Straight Screw Dislocations Parallel to the Surface of Pure Aluminum[J]. J Mater Sci Technol, 2007, 23(03): 392 -394 .
[5] J.J.Park, G.H.Kim, S.M.Hong, S.H.Lee, M.K.Lee, C.K.Rhee. Properties of Dispersion Casting of Y2O3 Particles in Hypo, Hyper and Eutectic Binary Al-Cu Alloys[J]. J Mater Sci Technol, 2008, 24(01): 57 -59 .
[6] Jingbao Lian,Xudong Sun,Tie Gao,Qiang Li,Xiaodong Li,Zhigang LIU. Preparation of Gd2O2S:Pr Scintillation Ceramics by Pressureless Reaction Sintering Method[J]. J Mater Sci Technol, 2009, 25(02): 254 -258 .
[7] Jun Wei,Xiaoyan Song,Qingchao Han,Lingmei Li. Thermodynamic Properties of Nanograin Boundary and Thermal Stability of Nanograin Structure[J]. J Mater Sci Technol, 2009, 25(04): 475 -478 .
[8] R.Ramamoorthy; S.Ramasang and A.Narayanasamy(Dept. of Nuclear Physics, University of Madras, Guindy Campus, Madras-600 025, India). Impedance and Magnetization Studies of Ultrafine Ni-Zn Ferrite[J]. J Mater Sci Technol, 1997, 13(4): 289 -292 .
[9] CHE Chengwei ZHANG Zhiming DONG Xianglin LIU Chengliang Harbin Institute of Technology,Harbin,150006,ChinaInstitute of Metal Research,Academia Sinica Shenyang,110015,China. Laser Surface Modification of Ti-6Al-4V with Addition of Pr[J]. J Mater Sci Technol, 1992, 8(5): 320 -324 .
[10] JI Jingwen ** Northeast University of Technology,Shenyang 110006,China.. Contamination in Non-consumable Melting[J]. J Mater Sci Technol, 1990, 6(5): 365 -367 .
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.