J. Mater. Sci. Technol. ›› 2025, Vol. 237: 145-154.DOI: 10.1016/j.jmst.2025.03.024
• Research Article • Previous Articles Next Articles
Seongjun Kima,1, Mingyu Shina,1, Sung-Tag Oh b,*, Do-Heyoung Kimc,*, Yongchai Kwona,*
Received:2024-11-24
Revised:2025-02-14
Accepted:2025-03-01
Published:2025-12-01
Online:2026-01-08
Contact:
*E-mail addresses: About author:1These authors contributed equally to this work.
Seongjun Kim, Mingyu Shin, Sung-Tag Oh, Do-Heyoung Kim, Yongchai Kwon. Aqueous flow battery using iron and oxygen as redox couple and cobalt(triisopropanolamine) as redox mediator[J]. J. Mater. Sci. Technol., 2025, 237: 145-154.
| [1] B. Doğan, O.M. Driha, D.B. Lorente, U. Shahzad, Sustain. Dev. 29(2021) 1-12. [2] D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, Energy Strateg. Rev. 24(2019) 38-50. [3] J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco, Sol. Energy 195 (2020) 703-724. [4] M. Anvari, G. Lohmann, M. Wächter, P. Milan, E. Lorenz, D. Heinemann, M.R.R.Tabar, J. Peinke, New J.Phys. 18(2016) 063027. [5] P. Das, J. Mathur, R. Bhakar, A. Kanudia, Energy Strateg. Rev. 22(2018) 1-15. [6] M.Y. Suberu, M.W. Mustafa, N. Bashir, Renew. Sustain. Energy Rev. 35(2014) 499-514. [7] E. Sayed, A. Olabi, A. Abdul, A. Radwan, A. Mdallal, A. Rezk, M. Abdelkareem, Energies 16 (2023) 1415. [8] H. Zhang, W. Lu, X. Li, Electrochem. Energy Rev. 2(2019) 492-506. [9] W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Adv. Funct. Mater. 23(2013) 970-986. [10] H. Lim, M. Shin, Y. Kwon, Korean J. Chem. Eng. 40(2023) 3087-3095. [11] E. Sánchez-Díez, E. Ventosa, M. Guarnieri, A. Trovò, C. Flox, R. Marcilla, F. Soavi, P. Mazur, E. Aranzabe, R. Ferret, J. Power Sources 481 (2021) 228804. [12] R.M. Darling, K.G. Gallagher, J.A. Kowalski, S. Ha, F.R. Brushett, Energy Environ. Sci. 7(2014) 3459-3477. [13] M. Chen, P. Liu, Y. Li, Y. Hu, Z. Hu, Q. Wang, J. Therm. Anal.Calorim. 147(2022) 4131-4140. [14] S. Park, M. Shin, U. Kunz, Y. Kwon, Korean J. Chem. Eng. 41(2024) 24 41-24 48. [15] M. Shin, S. Park, K. Hyun, Y. Kwon, Chem. Eng. J. 471(2023) 144682. [16] M. Salado, E. Lizundia, Mater. Today Energy 28 (2022) 101064. [17] L. Li, Z. Chang, X. Zhang, Adv. Sustain. Syst. 1(2017) 1-51. [18] Y. Yan, C. Shu, R. Zheng, M. Li, Z. Ran, M. He, A. Hu, T. Zeng, H. Xu, Y. Zeng, Nano Res. 15(2022) 3150-3160. [19] M. Li, C. Shu, A. Hu, Y. Yan, M. He, J. Long, J. Mater. Sci.Technol. 92(2021) 159-170. [20] S. Wang, X. Wen, Z. Huang, H. Xu, F. Fan, X. Wang, G. Tian, S. Liu, P. Liu, C. Wang, C. Zeng, C. Shu, Z. Liang, Adv. Funct. Mater. (2024), doi: 10.1002/adfm. 202416389. [21] P. Hu, H. Lan, X. Wang, Y. Yang, X. Liu, H. Wang, L. Guo, Energy Storage Mater. 19(2019) 62-68. [22] H. Bai, Z. Song, J. Power Sources 580 (2023) 233426. [23] G.L. Soloveichik, Chem. Rev. 115(2015) 11533-11558. [24] H. He, S. Tian, B. Tarroja, O.A. Ogunseitan, S. Samuelsen, J.M. Schoenung, J. Clean. Prod. 269(2020) 121740. [25] S. Ha, K.G. Gallagher, J. Power Sources 296 (2015) 122-132. [26] M. Shin, C. Noh, Y. Kwon, Chem. Eng. J. 453(2023) 139738. [27] Y. Liang, H. Job, R. Feng, F. Parks, A. Hollas, X. Zhang, M. Bowden, J. Noh, V. Mu- rugesan, W.Wang, Cell Rep. Phys. Sci. 4(2023) 101633. [28] H. Ren, Y. Su, S. Zhao, N. Chen, C. Li, X. Wang, B. Li, J. Energy Storage 75 (2024) 109592. [29] M. Shin, Y. Lim, Y. Kwon, J. Mater. Chem. A 12 (2024) 23087-23097. [30] T. Li, M. Huang, X. Bai, Y.X. Wang, Prog. Nat. Sci. Mater. Int. 33(2023) 151-171. [31] E.V. Timofeeva, C.U. Segre, G.S. Pour, M. Vazquez, B.L. Patawah, Curr. Opin. Electrochem. 38(2023) 101246. [32] X. Han, X. Li, J. White, C. Zhong, Y. Deng, W. Hu, T. Ma, Adv. Energy Mater. 8(2018) 1-28. [33] F. Santos, A. Urbina, J. Abad, R. López, C. Toledo, A.J.F. Romero, Chemosphere 250 (2020) 126273. [34] G.R. Zhang, S. Wöllner, Appl. Catal. B-Environ. 222(2018) 26-34. [35] W. Chen, J. Huang, J. Wei, D. Zhou, J. Cai, Z.D. He, Y.X. Chen, Electrochem. Com- mun. 96(2018) 71-76. [36] Y.G. Zhu, X. Wang, C. Jia, J. Yang, Q. Wang, ACS Catal. 6(2016) 6191-6197. [37] S. Huang, H. Zhang, J. Zhuang, M. Zhou, M. Gao, F. Zhang, Q. Wang, Adv. Energy Mater. 12(2022) 2103622. [38] Y. Qiao, S. Ye, J. Phys. Chem. C 120 (2016) 15830-15845. [39] H. Zhang, S. Huang, M. Salla, J. Zhuang, M. Gao, D.G. Lek, H. Ye, Q. Wang, ACS Energy Lett. 7(2022) 2565-2575. [40] M. Shin, H. Lim, K. Hyun, Y. Kwon, Appl. Energy 381 (2025) 125225. [41] M. Shin, S. Oh, H. Jeong, C. Noh, Y. Chung, J.W. Han, Y. Kwon, Int. J. Energy Res. 46(2022) 8175-8185. [42] C. Noh, Y. Chung, Y. Kwon, Chem. Eng. J. 405(2021) 126966. [43] A. Lê, D. Floner, T. Roisnel, O. Cador, L. Chancelier, F. Geneste, Electrochim. Acta 301 (2019) 472-477. [44] C. Noh, Y. Chung, Y. Kwon, J. Power Sources 495 (2021) 229799. [45] Y. Song, L. Xia, M. Salla, S. Xi, W. Fu, W. Wang, M. Gao, S. Huang, S. Huang, X. Wang, X. Yu, T. Niu, Y. Zhang, S. Wang, M. Han, M. Ni, Q. Wang, H. Zhang, Angew. Chem. Int. Ed. 63(2024) e202314796. [46] C. Li, Q. Zheng, Q. Xiang, L. Yu, P. Chen, D. Gao, Q. Liu, F. He, D. Yu, Y. Liu, C. Chen, J. Chem. Educ. 98(2021) 3026-3031. [47] R. Zhou, Y. Zheng, M. Jaroniec, S.Z. Qiao, ACS Catal. 6(2016) 4720-4728. [48] S. Treimer, A. Tang, D.C. Johnson, Electroanalysis 14 (2002) 165. [49] Y. Ying, J.F.Godínez Salomón, L.Lartundo-Rojas, A. Moreno, R. Meyer, C. A. Damin, C.P. Rhodes, Nanoscale Adv. 3(2021) 1976-1996. [50] L. Tian, J.L. Zhu, L. Chen, B. An, Q.Q. Liu, K.L. Huang, J. Nanoparticle Res. 13(2011) 3483-3488. [51] N. Santhosh, K. Pradeeswari, S. Kannadhasan, R.M. Kumar, M.S. Pandian, P. Ra- masamy, P.Vijayakumar, J. Clust. Sci. 33(2022) 2085-2091. |
| [1] | Shuangfei Huang, Xiaowen Chen, Chunxue Guo, Xuemei Han, Ping Zhu, Xinsheng Zhao, Chuangwei Liu, Sa Liu. Self-supported coaxial nanocable CuO@Ni(OH)2@FeOOH heterojunction arrays catalyst with interfacial coupling for enhanced oxygen evolution and urea oxidation reactions [J]. J. Mater. Sci. Technol., 2026, 240(0): 290-298. |
| [2] | Tiandong Chen, Luxiang Ma, Yan Zhao, Hongli Su, Chunxi Hai, Junyi Zhang, Jiaxing Xiang, Xin He, Shengde Dong, Yanxia Sun, Qi Xu, Shizhi Huang, Jitao Chen, Yuan Zhou. Hierarchical surface configuration engineering of lithium-rich manganese-based cathode materials for high energy density Li-ion batteries [J]. J. Mater. Sci. Technol., 2025, 231(0): 45-53. |
| [3] | Pinxian Jiang, Yuxin Fan, Mohamed Ait Tamerd, Jianlong Cong, Zhengkun Xie, Menghao Yang, Jiwei Ma. Unlocking uniform and stable SEI formation through optimizing oxygen vacancies in SnO2 enables reversible lithium intercalation [J]. J. Mater. Sci. Technol., 2025, 232(0): 202-208. |
| [4] | Xianyu Chu, Yanan Wang, Li Jing, Wei Jiang, Yuanyuan Wu, Ming Lu, Bo Liu, Chunbo Liu, Yantao Sun, Guangbo Che. Design and construction of metal sulfide/phosphide heterostructures with optimized d-band center and boosted electrocatalytic oxygen evolution [J]. J. Mater. Sci. Technol., 2025, 233(0): 38-47. |
| [5] | Zhichao Ma, Tianfang Yang, Jinrui Huang, Shixiang Hu, Bingcheng Ge, Yang Liu, Shuyan Gao. Enhanced electrocatalytic reduction of nitrate to ammonia via anchoring CuNi alloy on oxygen vacancy-rich N-Ti3C2Tx [J]. J. Mater. Sci. Technol., 2025, 233(0): 193-200. |
| [6] | Bingxuan Zhai, Yan He, Jiawen Chen, Xuemin Cui, Leping Liu. In situ SO42- regulation of ZrFeCoNiAl-based high-entropy electrocatalysts to enhance O-O coupling in the oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2025, 234(0): 151-163. |
| [7] | Xukai Xia,Yanyan Jia,Weikang Wang, Jifang Zhang, Lele Wang, Qinqin Liu. Constructing surface oxygen vacancy-rich ln2O3-x/tubular carbon nitride S-scheme heterojunction for selective biomass-derivative oxidation coupled with H2 production [J]. J. Mater. Sci. Technol., 2025, 236(0): 301-309. |
| [8] | Chenxu Liu, Zeming Yuan, Wei Li, Tingting Zhai, Zhonggang Han, Xinfang Zhang. Improved hydrogen storage performance of MgH2 by adding CeO2@NC with high catalytic activity [J]. J. Mater. Sci. Technol., 2025, 238(0): 119-131. |
| [9] | Hassan Muhammad Mudassir, Chenghao Xie, Fanjie Xia, Rui Fang, Qiushuang Chen, Zhaopei Liu, Tiancheng Dong, Fang Liu, Shan Hu, Jinsong Wu. P2/P3 Biphasic layered oxide cathode enabled by additional electron-holes on oxygen for high-capacity sodium-ion batteries [J]. J. Mater. Sci. Technol., 2025, 238(0): 230-237. |
| [10] | Ruoyu Wu, Ruiying Gao, Zhibin Li, Jing Wang, Hui Wang, Yuan Wu, Suihe Jiang, Xiaobin Zhang, Xianzhen Wang, Xiongjun Liu, Zhaoping Lu. Nanoporous high-entropy Mn-Fe-Co-Ni amorphous oxide: Boosting oxygen evolution efficiency through electron spin-polarization [J]. J. Mater. Sci. Technol., 2025, 238(0): 266-275. |
| [11] | Rongfang Li, Bowen Guo, Zongkun Bian, Jin Chang, Jiaxin Zhang, Jiayue Wang, Heng Zhang, Wenqiang Li, Xun Feng. Single-atom Ru-doped nickel sulfide nanostructures achieve superior water splitting performance via reconstruction and adsorption optimization [J]. J. Mater. Sci. Technol., 2025, 238(0): 313-321. |
| [12] | Xiaorui Wang, Lingxing Zan, Hongling Zhang, Kun Tian, Dan Zhu, Jian Li, Qiang Weng, Cuicui Wang, Qingbo Wei, Wenlin Zhang, Xiangyang Hou, Feng Fu. Cr-leaching induced in-situ surface reconstruction of trimetallic CoFeCr-hydroxide on Ni foam for highly efficient water oxidation [J]. J. Mater. Sci. Technol., 2025, 239(0): 320-329. |
| [13] | Xin Yang, Lijie Zhong, Songxin Ye, Dequan He, Shuxian Yuan, Huixin Li, Yuting Ma, Xiaocheng Mo, Shiyu Gan, Li Niu. Sulfur poisoned PtNi/C catalysts toward two-electron oxygen reduction reaction for acidic electrosynthesis of hydrogen peroxide [J]. J. Mater. Sci. Technol., 2025, 204(0): 268-275. |
| [14] | Haoran Jiang, Zichen Wang, Suhao Chen, Yong Xiao, Yu Zhu, Wei Wu, Runzhe Chen, Niancai Cheng. Atomic controlled shell thickness on Pt@Pt3Ti core-shell nanoparticles for efficient and durable oxygen reduction [J]. J. Mater. Sci. Technol., 2025, 205(0): 212-220. |
| [15] | Bo Zhang, Kang Li, Renfu Li, Shoufeng Wang, Longtian Kang. Insight into bay-/end-substituted perylene diimide and its S-scheme heterojunction for enhanced photocatalytic H2O2 production under visible-light irradiation [J]. J. Mater. Sci. Technol., 2025, 206(0): 257-268. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
