J. Mater. Sci. Technol. ›› 2025, Vol. 234: 319-334.DOI: 10.1016/j.jmst.2025.02.030
• Research Article • Previous Articles
Kwangtae Sona,1, Seung-Min Jeonb,1, Brian K. Paula, Young-Sang Nab, Kijoon Leec,*, Young-Kyun Kimb,*
Received:2024-11-10
Revised:2025-01-23
Accepted:2025-02-10
Published:2025-11-01
Online:2025-03-24
Contact:
*E-mail addresses: kijoonlee@tamu.edu (K. Lee), ykkim@kims.re.kr (Y.-K. Kim).
About author:1These authors equally contributed to this work.
Kwangtae Son, Seung-Min Jeon, Brian K. Paul, Young-Sang Na, Kijoon Lee, Young-Kyun Kim. Extremely low temperature mechanical behavior of in-situ oxide containing 304L stainless steel fabricated by laser powder bed fusion[J]. J. Mater. Sci. Technol., 2025, 234: 319-334.
| [1] H. Jouhara, A. Chauhan, V. Guichet, B. Delpech, M.A. Abdelkareem, A.G. Olabi, J. Trembley, J. Taiwan Inst.Chem. E. 148 (2023) 104709. [2] Y.W. Liu, X. Liu, X.Zh. Yuan, X.J. Wang, Appl. Energ. 162 (2016) 1678-1686. [3] B. Zhang, N. Xu, B. Wang, Q. Liao, R. Qiu, X. Wei, H. Zhang, Y. Liang, Energ. Covers. Manage. 312 (2024) 118516. [4] S. Pamidi, C.H. Kim, J.-H. Kim, D. Crook, S. Dale, Cryogenics 52 (2012) 315-320. [5] A. Léon, Hydrogen storage, in: A. Léon (Ed.) , Hydrogen Technology: Mobile and Portable Applications, Springer, Berlin, Heidelberg, 2008, pp. 81-128. [6] Y.K. Yoon, J.H. Kim, K.T. Shim, Y.K. Kim, Int. J. Mod. Phys. 6 (2012) 355-360. [7] D.A. Wigley, Deformation processes in impure metals and alloys, in: Mechanical Properties of Materials at Low Temperatures, Springer, 1971, pp. 84-88. [8] P. Fernández-Pisón, J.A.Rodríguez-Martínez, E.García-Tabarés, I. Avilés-Santillana, S. Sgobba, Eng. Frac. Mech. 258 (2021) 108042. [9] H.I.McHenry, in: R.P Reed, T. Horiuchi (Eds.) , Austenitic Stainless Steels At Low Temperatures, Springer, Boston, MA, 1983. [10] C. Zheng, W. Yu, Mater. Sci. Eng. A 710 (2018) 359-365. [11] J. Peng, K. Li, J. Peng, J. Pei, C. Zhou, Mater. Sci. Technol. 34 (2018) 547-560. [12] T. Ogata, T. Yuri, Y. Ono, A.P.I.Conf, AIP Conf. Proc. 823 (2006) 122-129. [13] Y. Huang, H.J. Ryu, K.A. Lee, J. Powder Mater. 32 (2025) 50-58. [14] W.E. Frazier, J. Mater. Eng.Perform. 23 (2014) 1917-1928. [15] M. Ghayoor, K. Lee, Y. He, C.H. Chang, B.K. Paul, S. Pasebani, Addit. Manuf. 32 (2020) 101011. [16] A.T. Sutton, C.S. Kriewall, S. Karnati, M.C. Leu, J.W. Newkirk, W. Everhart, B. Brown, Addit. Manuf. 36 (2020) 101439. [17] H. Lu, J. Pan, Y. Gu, J. Xiao, C. Ma, N. Yu, H. Li, Mater. Sci. Eng. A 865 (2023) 144649. [18] H. Zhang, C. Li, G. Yao, Y. Shi, Y. Zhang, Int. J. Plast. 155 (2022) 103335. [19] P. Kumar, Z. Zhu, S.M.L.Nai, R.L. Narayan, U. Ramamurty, Scr. Mater. 202 (2021) 114002. [20] Z. Wang, A.M. Beese, Acta Mater. 131 (2017) 410-422. [21] N.C. Ferreri, R. Pokharel, V. Livescu, D.W. Brown, M. Knezevic, J.-S. Park, M.A. Torrez, G.T. Gray III, Acta Mater. 195 (2020) 59-70. [22] T. Horn, C. Rock, D. Kaoumi, I. Anderson, E. White, T. Prost, J. Rieken, S. Saptarshi, R. Schoell, M. DeJong, S. Timmins, J. Forrester, S. Lapidus, R. Napolitano, D. Zhang, Mater. Des. 216 (2022) 110574. [23] M. Velasco-Castro, E. Hernandez-Nava, I.A. Figueroa, I. Todd, R. Goodall, Heliyon 5 (2019) e02813. [24] R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Int. J. Adv. Manuf. Technol. 59 (2012) 1025-1035. [25] M.P. Haines, N.J. Peter, S.S. Babu, E.A. Jägle, Addit. Manuf. 33 (2020) 101178. [26] H. Nakajima, K. Yoshida, H. Tsuji, R.L. Tobler, I.S. Hwang, M.M. Morra, R.G.Ballinger, in: F.R. Fickett, R.P. Reed (Eds.) , Advances in cryogenic engineering, 38, Springer, Boston, MA, 1992. [27] J. Fukakura, K. Suzuki, H. Kashiwaya, Cryogenic fatigue design of austenitic stainless steels for superconducting magnet applications, in: K. Iida, A.J. McEvily (Eds.) , Advanced Materials for Severe Service Applications, Springer, Dordrecht, 1987, pp. 253-271. [28] N. Nadammal, T. Mishurova, T. Frisch, I. Serrano-Munoz, A. Kromm, C. Haberland, P.D. Portella, G. Bruno, Addit. Manuf. 38 (2021) 101792. [29] Y. He, H. Zhou, W. Liu, F. Duan, K. Shin, Y. Zhao, W. Zhen, Mater. Des. 238 (2024) 112723. [30] C.R. Hubbard, R.L. Snyder, Powder Diff. 3 (1998) 74-77. [31] S.D. Rasberry, Gaithersberg MD, 1989. [32] G. Ribárik, B. Jóni, T. Ungár, Crystals 10 (2002) 623. [33] X. Zhang, P. Kenesei, J.-S. Park, J.Almer, M. Li, J. Nucl. Mater. 549 (2021) 152874. [34] G. Ribárik, T. Ungár, Convolutional multiple whole profile fitting main page, http://csendes.elte.hu/cmwp/, 2017. (accessed 3 March 2017) [35] J.J. Valencia, P.N. Quested, ASM Handbook Vol. 22B: Metals process Simulation, ASM international, Materials Park, OH, 2010. [36] J. Yin, H. Zhu, L. Ke, W. Lei, C. Dai, D. Zuo, Comput. Mater. Sci. 53 (2012) 333-339. [37] X. He, P.W. Fuerschbach, T. DebRoy, J. Phys.D: Appl. Phys. 36 (2003) 1388. [38] Ansys inc., Moving heat source V4.1 page, https://catalog.ansys.com/product/ 5b3bc6857a2f9a5c90d32e7e/moving-heat-source, 2019. (accessed 3 July2019) [39] B.K. Choudhary, Mater. Sci. Eng. A 603 (2014) 160-168. [40] B.K. Choudhary, Metall. Mater. Trans.A 45 (2014) 302-316. [41] H. Fujii, A. Yamamoto, M. Yabumoto, T. Ogata, M. Hayashi, S. Okaguchi, Y. Wada, Evaluation of mechanical properties of austenitic stainless steels and aluminum alloy in liquid hydrogen, in: J.C. Bolcich, T.N. Veziroglu (Eds.) , Proc. of the 12th WHEC, Buenos Aires, Argentina, June 21-26, 1998, pp. 1893-1902. [42] G.M. Karthik, E.S. Kim, P. Sathiyamoorthi, A. Zargaran, S.G. Jeong, R. Xiong, S.H. Kang, J. Cho, H.S. Kim, Addit. Manuf. 47 (2021) 102314. [43] S. Asgari, E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. A 28 (1997) 1781-1795. [44] A. Weidner, U.D. Hangen, H. Biermann, Philos. Mag. Lett. 94 (2014) 522-530. [45] S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Metall. Mater. Trans. A 47 (2016) 49-58. [46] B. Dovgyy, A. Piglione, P.A. Hooper, M.S. Pham, Mater. Des. 194 (2020) 108845. [47] H.E. Sabzi, E. Hernandez-Nava, X.H. Li, H. Fu, D. San- Martín, P.E.J.Rivera-Díaz-del-Castillo, Mater.Des. 212 (2021) 110246. [48] S. Sunil, R. Kapoor, Metall. Mater. Trans. A 51 (2020) 5667-5676. [49] W.B. Lee, K.C. Chan, Acta Metall. Mater. 39 (1991) 411-417. [50] J. Talonen, H. Hanninen, Acta Mater. 55 (2007) 6108-6118. [51] Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, L. Zuo, Mater. Sci. Eng. 552A (2012) 514-522. [52] J. Liu, C. Chen, Q. Feng, X. Fang, H. Wang, F. Liu, J. Lu, D. Raabe, Mater. Sci. Eng. A 703 (2017) 236-243. [53] Peter Jurci, ˇ Ivo Dlouhý, Materials 17 (2024) 548. [54] M. Gao, R.P. Wei, Acta Metall. 32 (1984) 2115-2124. [55] B. Obst, A. Nyilas, Mater. Sci. Eng. A 137 (1991) 141-150. [56] B. Obst, A. Nyilas, Time-resolved flow stress behavior of structural materials at low temperatures, in: Advances in Cryogenic Engineering Materials, Springer, Boston, MA, 1998, pp. 331-338. [57] T.F. Cheng, J.A. Elambasseril, Z. Zhang, T.H. Fang, W.D. Lu, Mater. Sci. Eng. A 824 (2021) 141807. [58] K. Shibata, T. Ogata, T. Yuri, AIP Conf. Proc. 824 (2006) 83-90. [59] N.I.Vazquez-Fernandez, G.C. Soares, J.L. Smith, J.D. Seidt, M. Isakov, A. Gilat, V.T. Kukkala, M. Hokka, J. Dyn. Behav. Mater. 5 (2019) 221-229. [60] N. Tirunilai, J.S. Carpenter, Y. Mishin, M.D. Sangid, Acta Mater. 200 (2020) 980-991. [61] N. Tirunilai, J.S. Carpenter, M.D. Sangid, Metals 12 (2022) 514. [62] Y. Wang, D.D. Sun, Y.P. Bai, Z.X. Pang, J. Phys. Conf. Ser. 2045 (2021) 012023. [63] J.D. Eshelby, F.C. Frank, F.R.N.Nabarro, Phil. Mag. 42 (1951) 351-364. [64] Z. Yanushkevich, S.V. Dobatkin, A. Belyakov, R. Kaibyshev, Acta Mater. 136 (2017) 39-48. [65] S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Wang, Z.F. Zhang, J. Alloys Compd. 806 (2019) 992-998. [66] J.S. Zuback, T. DebRoy, Materials 11 (2018) 2070. [67] H.E. Sabzi, X.-H. Li, C. Zhang, H. Fu, P.E.J. Rivera-Diaz-del-Castillo, Mater. Sci. Eng. A 855 (2022) 143882. [68] M.E. Kassner, K. Kyle, Taylor hardening in five power law creep of metals and class M alloy, in: M.A. Meyers, R.O. Ritchie, M. Sarikaya (Eds.) , Nano and Microstructural Design of Advanced Materials, Elsevier Ltd. Amsterdam, the Netherland, 2003, pp. 255-271. [69] L. Wang, Z. Lu, H. Li, Z. Zheng, G. Zhu, J.-S. Park, X.Zeng, T.R. Bieler, Scr. Mater. 195 (2021) 113743. [70] D. Samantarary, V. Kumar, A.K. Bhaduri, P. Dutta, Inter. J. Metall. Eng. 2 (2013) 149-153. [71] T.R. Smith, J.D. Sugar, C.S. Marchi, J.M. Schoenung, Acta Mater. 164 (2019) 728-740. [72] M. Marya, V. Singh, S. Marya, J.Y. Hascoet, Metall. Mater. Trans. B 46 (4) (2015) 1654-1665. [73] M.M. Collur, A. Paul, T. Debroy, Metall. Trans. B 18 (4) (1987) 733-740. [74] J. Yu, M. Rombouts, G. Maes, Mater. Des. 45 (2013) 228-235. [75] M. Kato, T. Mori, L.H. Schwartz, Acta Metall. Mater. 28 (1980) 285-290. [76] M. Kato, Acta Metall. Mater. 29 (1981) 79-87. [77] W.K. Choo, J.H. Kim, J.C. Yoon, Acta Mater. 45 (1997) 4877-4885. [78] F. Kano, K. Fukuya, S. Hamada, Y. Miwa, J. Nucl. Mater.258-263 (1998) 1713-1717. [79] Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, T. Suzuki, Trans. Japan Inst. Metals 27 (1986) 656-664. [80] H. Sieurin, J. Zander, R. Sandstrom, Mater. Sci. Eng. A 415 (2006) 66-71. [81] R.P. Reed, N.J. Simon, Low temperature strengthening of austenitic stainless steels with nitrogen and carbon, in: A.F. Clark, R.P. Reed (Eds.) , Advances in Cryogenic Engineering Materials, Advances in Cryogenic Engineering, Advances in Cryogenic Engineering Materials, Advances in Cryogenic Engineering, Vol. 30, Springer, Boston, MA, 1984, pp. 127-136. [82] J. Eliasson, R. Sandstrom, Steel Res. 71 (2000) 249-254. [83] S.T. Pisarik, D.C. Van Aken, Metall. Mater. Trans. A 47 (2016) 1009-1018. [84] D. Fahr, Metall. Trans. 2 (1971) 1883-1892. [85] C. Syn, B. Fultz, J. Morris, Metall. Trans. A 9 (1978) 1635-1640. [86] T. Mori, Y. Yanai, Y. Fukui, J. Soc. Mater.Sci. Jpn. 40 (1991) 172-177. [87] L. Wang, Z. Tan, S. Wang, W. Liu, J. Hao, X. Zhang, S. Deng, C. Yu, H. Zheng, Z. Zeng, H. Lu, L. He, J. Chen, J. Mater. Process.Technol. 316 (2023) 117966. [88] J.W. Simmons, Mater. Sci. Eng. A 207 (1996) 159-169. [89] N. Saenarjhan, J.-H Kang, S.-J. Kim, Mater. Sci. Eng. A 724 (2019) 608-616. [90] T.-H. Lee, E.Shin, C.-S. Oh, H.-Y. Ha, S.-J. Kim, Acta Mater. 58 (2010) 3173-3186. [91] T.-H. Lee, C.-S. Oh, S.-J Kim, Scr. Mater. 58 (2008) 110-113. [92] T. Horn, C. Rock, D. Kaoumi, I. Anderson, E. White, T. Prost, J. Rieken, S. Saptarshi, R. Schoell, M. DeJong, S. Timmins, J. Forrester, S. Lapidus, R. Napolitano, D. Zhang, J. Darsell, Mater. Des. 216 (2022) 110574. [93] P. Deng, M. Karadge, R.B. Rebak, V.K. Gupta, B.C. Prorok, X. Lou, Addit. Manuf. 35 (2020) 101334. [94] S. Sridhar, H.Y. Sohn, The kinetics of metallurgical reactions, Ch. 7, in: S. Seetharaman (Ed.) , Fundamentals of Metallurgy, Woodhead publishing, Cambridge, United Kingdom, 2005, pp. 270-349. [95] H. Lei, J. He, J. Mater. Sci.Technol. 28 (2012) 642-646. [96] K. Nagata, M. Sasabe, ISIJ Int. 60 (2020) 1872-1877. [97] D. Wang, W. Dou, Y. Ou, Y. Yang, C. Tan, Y. Zhang, J. Mater. Res.Technol. 12 (2021) 1051-1064. [98] J. Yang, L.M. Schlenger, M.H. Nasab, S.V. Petegem, F. Marone, R.E. Loge, C. Leinenbach, Addit. Manuf. 84 (2024) 104092. |
| [1] | Bin Zhang, Rongxin Sun, Pan Ying, Song Zhao, Yitong Zou, Lei Sun, Zihe Li, Yufei Gao, Mengdong Ma, Lingyu Liu, Chao Liu, Bo Xu. Microstructure and mechanical properties of high-pressure sintered B6O-SiC nanocomposites [J]. J. Mater. Sci. Technol., 2025, 204(0): 238-244. |
| [2] | Yuan Yuan, Yong Han, Kai Xu, Sisi Tang, Yaohua Zhang, Yaozha Lv, Yihan Yang, Xue Jiang, Keke Chang. Revealing the solidification microstructure evolution and strengthening mechanisms of additive-manufactured W-FeCrCoNi alloy: Experiment and simulation [J]. J. Mater. Sci. Technol., 2025, 204(0): 302-313. |
| [3] | Chenyu Ren, Kai Chen, Jingjing Liang, R. Lakshmi Narayan, Upadrasta Ramamurty, Jinguo Li. Microstructural evolution and its influence on the wear resistance of a laser directed energy deposited Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2025, 205(0): 127-138. |
| [4] | Yangyang Sun, Haibin Liu, Ruishan Xie, Ying Chen, Shujun Chen. Heat-balance control of friction rolling additive manufacturing based on combination of plasma preheating and instant water cooling [J]. J. Mater. Sci. Technol., 2025, 205(0): 168-181. |
| [5] | Wei Song, Junying Yang, Jingjing Liang, Nannan Lu, Yizhou Zhou, Xiaofeng Sun, Jinguo Li. Temperature/stress dependence of stress rupture behavior and deformation microstructure of an advanced superalloy for additive manufacturing [J]. J. Mater. Sci. Technol., 2025, 206(0): 37-52. |
| [6] | Shao-You Zhang, Yuan-Ting Mo, Zhen-Ming Hua, Xu Liu, Ze-Tian Liu, Hui-Yuan Wang. Improving long-term thermal stability in twin-roll cast Al-Mg-Si-Cu alloys by optimizing Mg/Si ratios [J]. J. Mater. Sci. Technol., 2025, 206(0): 164-175. |
| [7] | Yifei Xiao, Lele Zhang, Wei Yang, Tao Liu, Qisong Sun, Xiaolong Song, Yikun Fang, Anhua Li, Minggang Zhu, Wei Li. Elevated temperature magnetic microstructures and demagnetization mechanism for grain boundary diffused dual-main-phase (Nd, Ce)-Fe-B magnets [J]. J. Mater. Sci. Technol., 2025, 207(0): 10-23. |
| [8] | Si-Yi Chen, Ji-Bing Sun, Li-Zhu Wang, Mu-Jing Zhou, Xu-Ming Li, Yu-Long Liu. Innovative microstructures in SmCo5-based ribbons regulated by Fe-Ni-Al-Ti alloy [J]. J. Mater. Sci. Technol., 2025, 207(0): 34-45. |
| [9] | Kang Tu, Bo Li, Zonglin Li,Kaisheng Ming, Shijian Zheng. Dual heterogeneous structure enabled ultrahigh strength and ductility across a broad temperature range in CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2025, 207(0): 46-59. |
| [10] | Mingjuan Cai, Zhijun Guo, Lei Li, Xingyu Zheng, Xiaoxuan Yang, Qianqian Liu, Gaopeng Zou, Baolong Shen. Obtaining extremely low coercivity of high Bs FeCoBSiCPCu nanocrystalline alloys through modulation of magnetic anisotropy [J]. J. Mater. Sci. Technol., 2025, 207(0): 105-112. |
| [11] | Guoxin Lu, Qiang Wang, Bonnie Attard, Huhu Su, Shijian Zheng. Evidence of microstructural evolution linked to non-monotonic distribution of micromechanical properties induced by shot peening [J]. J. Mater. Sci. Technol., 2025, 207(0): 238-245. |
| [12] | Wei Yang, Jianxiao Shen, Zhenyu Wang, Guanshui Ma, Peiling Ke, Aiying Wang. Mechanical and electrochemical properties of (MoNbTaTiZr)1-xNx high-entropy nitride coatings [J]. J. Mater. Sci. Technol., 2025, 208(0): 78-91. |
| [13] | Ji Yeong Lee, Hyeonseok Kwon, Jae Heung Lee, Jihye Kwon, Jaemin Wang, Jae Wung Bae, Jongun Moon, Byeong-Joo Lee, Yoon-Uk Heo, Hyoung Seop Kim. Regulation of cryogenic mechanical behaviors of C-added non-equiatomic CoCrFeNiMo ferrous medium-entropy alloy via control of initial microstructure [J]. J. Mater. Sci. Technol., 2025, 208(0): 141-151. |
| [14] | Weiqiang Wan, Zidong Yin, Guangchao Han, Ming Yang, Jitao Hu, Fuchu Liu, Linhong Xu, Wei Bai, Hui Chen. Mechanical properties and microstructure evolution of T2 copper in multimodal ultrasonic vibration assisted micro-compression [J]. J. Mater. Sci. Technol., 2025, 208(0): 152-163. |
| [15] | R. Nikbakht, M. Saadati, H.S. Kim, M. Jahazi, R.R. Chromik. Multi-scale analysis of microstructural evolution and atomic bonding mechanisms in CoCrFeMnNi high-entropy alloys upon cold spray impact [J]. J. Mater. Sci. Technol., 2025, 208(0): 263-277. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
