J. Mater. Sci. Technol. ›› 2025, Vol. 220: 223-232.DOI: 10.1016/j.jmst.2024.08.060
• Research Article • Previous Articles Next Articles
Dong Zhaoa,b, Qunshou Wanga, Yanglin Wanga, Kunhua Zhangc, Ming Wenc, Chuangwei Liua, Dake Xua, Jianjun Wanga, Qiang Wangb, Wenli Peia,*
Received:
2024-03-10
Revised:
2024-08-29
Accepted:
2024-08-30
Published:
2025-06-10
Online:
2025-06-17
Contact:
*E-mail address: Dong Zhao, Qunshou Wang, Yanglin Wang, Kunhua Zhang, Ming Wen, Chuangwei Liu, Dake Xu, Jianjun Wang, Qiang Wang, Wenli Pei. Vacancy defect strategy for enhancing structural ordering and magnetic performance of L10-FePt nanoparticles[J]. J. Mater. Sci. Technol., 2025, 220: 223-232.
[1] S.H. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287 (20 0 0) 1989-1992. [2] D. Turenne, A. Yaroslavtsev, X. Wang, V. Unikandanuni, I. Vaskivskyi, M. Schnei- der, E. Jal, R. Carley, G. Mercurio, R. Gort, N. Agarwal, B. Van Kuiken, L. Mercadier, J. Schlappa, L.Le Guyader, N. Gerasimova, M. Teichmann, D. Lo- midze, A. Castoldi, D. Potorochin, D. Mukkattukavil, J. Brock, N.Zhou Hagstrom, A.H. Reid, X. Shen, X.J. Wang, P. Maldonado, Y. Kvashnin, K. Carva, J. Wang, Y.K. Takahashi, E.E. Fullerton, S. Eisebitt, P.M. Oppeneer, S. Molodtsov, A. Scherz, S. Bonetti, E. Iacocca, H.A. Durr, Sci. Adv. 8 (2022) eabn0523. [3] U. Bozuyuk, E. Suadiye, A. Aghakhani, N.O. Dogan, J. Lazovic, M.E. Tiryaki, M. Schneider, A.C. Karacakol, S.O. Demir, G. Richter, M. Sitti, Adv. Funct. Mater. 32(2021) 2109741. [4] W. Xiao, W. Lei, M. Gong, H.L. Xin, D. Wang, ACS Catal. 8(2018) 3237-3256. [5] A. Bolyachkin, H. Sepehri-Amin, I. Suzuki, H. Tajiri, Y.K. Takahashi, K. Srini-vasan, H.Ho, H. Yuan, T. Seki, A. Ajan, K. Hono, Acta Mater. 227(2022) 117744. [6] T.Y. Yoo, J.M. Yoo, A.K. Sinha, M.S. Bootharaju, E. Jung, H.S. Lee, B.H. Lee, J. Kim, W.H. Antink, Y.M. Kim, J. Lee, E. Lee, D.W. Lee, S.P. Cho, S.J. Yoo, Y.E. Sung, T. Hyeon, J. Am. Chem.Soc. 142(2020) 14190-14200. [7] H. Cheng, C. Wang, D. Qin, Y. Xia, Acc. Chem. Res. 56(2023) 900-909. [8] X. Hu, Z. An, W. Wang, X. Lin, T.S. Chan, C. Zhan, Z. Hu, Z. Yang, X. Huang, L. Bu, J. Am. Chem.Soc. 145(2023) 19274-19282. [9] Y. Yu, L. He, J. Xu, J. Li, S. Jiang, G. Han, B. Jiang, W. Lei, W. Yang, Y. Hou, Nano Res. 15(2021) 446-451. [10] M. Luo, Y. Sun, X. Zhang, Y. Qin, M. Li, Y. Li, C. Li, Y. Yang, L. Wang, P. Gao, G. Lu, S. Guo, Adv. Mater. 30(2018) 1705515. [11] L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.Y. Ma, D. Su, X. Huang, Science 354 (2016) 1410-1414. [12] J. Guan, S. Yang, T. Liu, Y. Yu, J. Niu, Z. Zhang, F. Wang, Angew. Chem. Int. Ed. 60(2021) 21899-21904. [13] J. Li, Z. Xi, Y.T. Pan, J.S. Spendelow, P.N. Duchesne, D. Su, Q. Li, C. Yu, Z. Yin, B. Shen, Y.S. Kim, P. Zhang, S. Sun, J. Am. Chem.Soc. 140(2018) 2926-2932. [14] D. Zhao, X. Wang, L. Chang, W. Pei, C. Wu, F. Wang, L. Zhang, J. Wang, Q. Wang, J. Mater. Sci.Technol. 73(2021) 178-185. [15] A.S. Konopatsky, V.V. Kalinina, A.S. Savchenko, D.V. Leybo, E.V. Sukhanova, V. S. Baidyshev, Z.I. Popov, A.V. Bondarev, J. Polčák, D.V. Shtansky, Nano Res. 16(2022) 1473-1481. [16] X. Chen, Y. Wang, H. Wang, D. Shu, J. Zhang, P. Ruterana, H. Wang, J. Mater. Chem. C 5 (2017) 5316-5322. [17] Y. Yu, P. Mukherjee, Y. Tian, X.Z. Li, J.E. Shield, D.J. Sellmyer, Nanoscale 6 (2014) 12050-12055. [18] H. Wang, Y. Li, X. Chen, D. Shu, X. Liu, X. Wang, J. Zhang, H. Wang, Y. Wang, P. Ruterana, J. Magn. Magn.Mater. 422(2017) 470-474. [19] L. Chang, C. Wu, Q. Wang, T. Li, D. Zhao, K. Wang, Q. Wang, W. Pei, Nanoscale 14 (2022) 11738-11744. [20] L.E. Howard, H.L. Nguyen, S.R. Giblin, B.K. Tanner, I. Terry, A.K. Hughes, J.S. Evans, J. Am. Chem.Soc. 127(2005) 10140-10141. [21] W. Lei, J. Xu, Y. Yu, W. Yang, Y. Hou, D. Chen, Nano Lett. 18(2018) 7839-7844. [22] J. Guan, J. Zhang, X. Wang, Z. Zhang, F. Wang, Adv. Mater. 35(2023) e2207995. [23] Q. Li, L. Wu, G. Wu, D. Su, H. Lv, S. Zhang, W. Zhu, A. Casimir, H. Zhu, A. Men- doza-Garcia, S.Sun, Nano Lett. 15(2015) 2468-2473. [24] F. Li, Y. Zong, Y. Ma, M. Wang, W. Shang, P. Tao, C. Song, T. Deng, H. Zhu, J. Wu, ACS Nano 15 (2021) 5284-5293. [25] F. Lin, M. Li, L. Zeng, M. Luo, S. Guo, Chem. Rev. 123(2023) 12507-12593. [26] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775. [27] P.E. Blochl, Phys. Rev. B 50 (1994) 17953-17979. [28] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868. [29] A. Zunger, S. Wei, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65(1990) 353-356. [30] A. Takeuchi, A. Inoue, Mater. Trans. 46(2005) 2817-2829. [31] M.E. Glicksman, New York, 1999. [32] A.V.D. Walle, M. Asta, G. Ceder, Calphad 26 (2002) 539-553. [33] A.V.D. Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, Z.K. Liu, Calphad 42 (2013) 13-18. [34] F. Zhao, C. Liu, P. Wang, S. Huang, H. Tian, J. Alloy. Compd. 577(2013) 669-676. [35] S. Dai, Y. Hou, M. Onoue, S. Zhang, W. Gao, X. Yan, G.W. Graham, R. Wu, X. Pan, Nano Lett. 17(2017) 46 83-46 88. [36] J.A. Christodoulides, P. Farber, M. Dannl, H. Okumura, G.C. Hadjipanaysi, V. Skumryev, A. Simopoulos, D. Weller, IEEE Trans. Magn. 37(2001) 1292-1294. [37] Z. Ma, J. Mohapatra, K. Wei, J.P. Liu, S. Sun, Chem. Rev. 123(2023) 3904-3943. [38] D. Zhao, L. Chang, X. Wang, K. Liu, Q. Wang, Z. Sun, C. Liu, J. Wang, Q. Wang, W. Pei, New J. Chem. 46(2022) 6747-6755. [39] Z. Sun, D. Zhao, X. Wang, M. Yan, L. Chang, Q. Wang, W. Pei, J. Alloy. Compd. 870(2021) 159384. [40] W. Lei, Y. Yu, W. Yang, J. Mater. Chem. C 7 (2019) 11632-11638. [41] H. Wang, P. Shang, J. Zhang, M. Guo, Y. Mu, Q. Li, H. Wang, Chem. Mater. 25(2013) 2450-2454. [42] X. Chen, H. Wang, H. Wan, T. Wu, D. Shu, L. Shen, Y. Wang, P. Ruterana, P. D. Lund, H. Wang, Nano Energy 54 (2018) 280-287. [43] V. Tzitzios, G. Basina, N. Tzitzios, V. Alexandrakis, X. Hu, G. Hadjipanayis, New J. Chem. 40(2016) 10294-10299. [44] F.M. Abel, V. Tzitzios, E. Devlin, S. Alhassan, D.J. Sellmyer, G.C. Hadjipanayis, ACS Appl. Nano Mater. 2(2019) 3146-3153. [45] L. Chang, C. Wu, D. Zhao, Q. Wang, K. Wang, Q. Wang, W. Pei, Nanoscale 15 (2023) 10042-10049. [46] W. Lei, Y. Yu, W. Yang, M. Feng, H. Li, Nanoscale 9 (2017) 12855-12861. [47] K. Elkins, D. Li, N. Poudyal, V. Nandwana, Z. Jin, K. Chen, J.P. Liu, J. Phys.D-Appl. Phys. 38(2005) 2306-2309. [48] X.C. Hu, E. Agostinelli, C. Ni, G.C. Hadjipanayis, A. Capobianchi, Green Chem. 16(2014) 2292-2297. [49] J. Zhang, C. Li, J. Armstrong, S. Ren, Chem. Commun. 55(2019) 656-658. [50] S. Kang, G.X. Miao, S. Shi, Z. Jia, D.E. Nikles, J.W. Harrell, J. Am. Chem.Soc. 128(2006) 1042-1043. [51] A. Dong, J. Chen, X. Ye, J.M. Kikkawa, C.B. Murray, J. Am. Chem.Soc. 133(2011) 13296-13299. [52] J. Kim, C. Rong, Y. Lee, J.P. Liu, S. Sun, Chem. Mater. 20(2008) 7242-7245. [53] J. Kim, C. Rong, J.P. Liu, S. Sun, Adv. Mater. 21(2009) 906-909. [54] A. Capobianchi, M. Colapietro, D. Fiorani, S. Foglia, P. Imperatori, S. Laureti, E. Palange, Chem. Mater. 21(2009) 2007-2009. [55] L.C. Varanda, M. Jafelicci, J. Am. Chem.Soc. 128(2006) 11062-11066. [56] Q. Dong, G. Li, C.L. Ho, M. Faisal, C.W. Leung, P.W. Pong, K. Liu, B.Z. Tang, I. Manners, W.Y. Wong, Adv. Mater. 24(2012) 1034-1040. [57] Z. Meng, G. Li, S.C. Yiu, N. Zhu, Z.Q. Yu, C.W. Leung, I. Manners, W.Y. Wong, Angew. Chem. Int. Ed. 59(2020) 11521-11526. [58] Z. Meng, C.L. Ho, H.F. Wong, Z.Q. Yu, N. Zhu, G. Li, C.W. Leung, W.Y. Wong, Sci. China Mater. 62(2018) 566-576. [59] Q. Dong, G. Li, C.L. Ho, C.W. Leung, P.W.T.Pong, I. Manners, W.Y. Wong, Adv. Funct. Mater. 24(2013) 857-862. [60] J. He, B. Bian, Q. Zheng, J. Du, W. Xia, J. Zhang, A. Yan, J.P. Liu, Green Chem. 18(2016) 417-422. [61] K. Aso, H. Kobayashi, S. Yoshimaru, X.Q. Tran, M. Yamauchi, S. Matsumura, Y. Oshima, Nanoscale 14 (2022) 9842-9848. [62] W. Pei, D. Zhao, C. Wu, Z. Sun, C. Liu, X. Wang, J. Zheng, M. Yan, J. Wang, Q. Wang, A.C.S.Appl, Nano Mater. 3(2020) 1098-1103. [63] A.J. Bard, R. Parsons, J. Jordan, New York, 1985. [64] Z. Meng, F. Xiao, Z. Wei, X. Guo, Y. Zhu, Y. Liu, G. Li, Z.Q. Yu, M. Shao, W.Y. Wong, Nano Res. 12(2019) 2954-2959. [65] R. Medwal, N. Sehdev, S.Annapoorni Govind, Appl. Phys. A 109 (2012) 403-408. [66] L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollár, Surf. Sci. 411(1998) 186-202. [67] I. Suzuki, S. Kubo, H. Sepehri-Amin, Y.K. Takahashi, ACS Appl. Mater. Interfaces 13 (2021) 16620-16627. [68] W.C. Wen, R.V. Chepulskii, L.W. Wang, S. Curtarolo, C.H. Lai, Acta Mater. 60(2012) 7258-7264. [69] S. Chakravarty, H. Schmidt, U. Tietze, D. Lott, N.P. Lalla, A. Gupta, Phys. Rev. B 80 (2009) 014111. [70] G. Rein, H. Mehrer, K. Maier, Phys. Status Solidi (a) 45(1978) 253-261. [71] A. Seeger, Defect Diffus.Forum 143-147(1997) 21-36. [72] J. Chen, F. Jiang, Y. Yin, Acc. Chem. Res. 54(2021) 1168-1177. [73] J. Zhou, Y. Yang, Y. Yang, D.S. Kim, A. Yuan, X. Tian, C. Ophus, F. Sun, A.K. Schmid, M. Nathanson, H. Heinz, Q. An, H. Zeng, P. Ercius, J. Miao, Nature 570 (2019) 500-503. [74] D. Sun, Y. Wang, K.J.T. Livi, C. Wang, R. Luo, Z. Zhang, H. Alghamdi, C. Li, F. An, B. Gaskey, T. Mueller, A.S. Hall, ACS Nano 13 (2019) 10818-10825. [75] Y. Wang, M. Jiang, R. Wang, Z. Wen, H. Li, Y. Ren, G. Qin, Acta Mater. 235(2022) 118058. |
[1] | Congwen Duan, Xinya Wang, Haimei Wang, Mengmeng Wu, Yuchen Fan, Jinhui Wu, Ting Qu, Bogu Liu, Lianxi Hu, Poqian Liang, Fei Wang, Ying Wu. The impact of vacancy defective MgH2 (001)/(110) surface on the dehydrogenation of MgH2@Ni-CNTs: A mechanistic investigation [J]. J. Mater. Sci. Technol., 2024, 189(0): 77-85. |
[2] | Feiyang Wang, Hong-Hui Wu, Xiaoye Zhou, Penghui Bai, Chunlei Shang, Shuize Wang, Guilin Wu, Junheng Gao, Haitao Zhao, Chaolei Zhang, Xinping Mao. First-principle study on the segregation and strengthening behavior of solute elements at grain boundary in BCC iron [J]. J. Mater. Sci. Technol., 2024, 189(0): 247-261. |
[3] | Hongyi Li, Fuhua Cao, Tong Li, Yuanyuan Tan, Yan Chen, Haiying Wang, Peter K. Liaw, Lanhong Dai. Enhanced plasticity in refractory high-entropy alloy via multicomponent ceramic nanoparticle [J]. J. Mater. Sci. Technol., 2024, 194(0): 51-62. |
[4] | Shuo Wang, Xianghai Yang, Junsheng Wang, Chi Zhang, Chengpeng Xue. Identifying the crystal structure of T1 precipitates in Al-Li-Cu alloys by ab initio calculations and HAADF-STEM imaging [J]. J. Mater. Sci. Technol., 2023, 133(0): 41-57. |
[5] | Jianghuai Yuan, Zhenyu Wang, Guanshui Ma, Xiaojing Bai, Yong Li, Xiaoying Cheng, Peiling Ke, Aiying Wang. MAX phase forming mechanism of M-Al-C (M = Ti, V, Cr) coatings: In-situ X-ray diffraction and first-principle calculations [J]. J. Mater. Sci. Technol., 2023, 143(0): 140-152. |
[6] | Yue Zhou, William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas. From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrCx [J]. J. Mater. Sci. Technol., 2021, 82(0): 105-113. |
[7] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
[8] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 146-155. |
[9] | Fu-Zhi Dai, Huimin Xiang, Yinjie Sun, Yanchun Zhou. M2M'AlB4 (M = Mn, Fe, Co, M' = Cr, Mo, W): Theoretical predicted ordered MAB phases with Cr3AlB4 crystal structure [J]. J. Mater. Sci. Technol., 2019, 35(7): 1432-1438. |
[10] | Jianmin Lu,Qingmiao Hu,Rui Yang. A Comparative Study of Elastic Constants of NiTi and NiAl Alloys from First-Principle Calculations [J]. J Mater Sci Technol, 2009, 25(02): 215-218. |
[11] | Duanwen SHI, Yanchun ZHOU. First-principle Calculation of the Properties of Ti3SiC2 [J]. J Mater Sci Technol, 2002, 18(02): 146-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||