J. Mater. Sci. Technol. ›› 2025, Vol. 207: 160-176.DOI: 10.1016/j.jmst.2024.04.033
• Research article • Previous Articles Next Articles
Sang Yoon Songa, Dae Cheol Yanga, Han-Jin Kimb, Sang-In Leec, Hyeon-Seok Dod, Byeong-Joo Leed, Alireza Zargarane, Seok Su Sohna,*
Received:
2024-02-19
Revised:
2024-04-04
Accepted:
2024-04-18
Published:
2025-02-01
Online:
2024-05-09
Contact:
*E-mail address: Sang Yoon Song, Dae Cheol Yang, Han-Jin Kim, Sang-In Lee, Hyeon-Seok Do, Byeong-Joo Lee, Alireza Zargaran, Seok Su Sohn. Unveiling the roles of initial phase constituents and phase metastability in hydrogen embrittlement of TRIP‐assisted VCrCoFeNi medium‐entropy alloys[J]. J. Mater. Sci. Technol., 2025, 207: 160-176.
[1] E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4(2019) 515-534. [2] D.B. Miracle, O.N. Senkov, Acta Mater. 122(2017) 448-511. [3] Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu, T.G. Nieh, Intermetallics 66 (2015) 67-76. [4] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230. [5] D. Wei, X. Li, S. Schönecker, J. Jiang, W.-M. Choi, B.-J. Lee, H.S. Kim, A. Chiba, H. Kato, Acta Mater. 181(2019) 318-330. [6] J.W. Bae, H.S. Kim, Scr. Mater. 186(2020) 169-173. [7] J. Yang, Y.H. Jo, D.W. Kim, W.-M. Choi, H.S. Kim, B.-J. Lee, S.S. Sohn, S. Lee, Mater. Sci. Eng. A 772 (2020) 138809. [8] J.W. Bae, J.B. Seol, J. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B.-J. Lee, H.S. Kim, Acta Mater. 161(2018) 388-399. [9] D.G. Kim, Y.H. Jo, J. Yang, W.-M. Choi, H.S. Kim, B.-J. Lee, S.S. Sohn, S. Lee, Scr. Mater. 171(2019) 67-72. [10] F. Haftlang, A. Zargaran, J.B. Seol, J. Moon, P.A. Rad, E.S. Kim, H.S. Kim, Scr. Mater. 235(2023) 115617. [11] E. Povolyaeva, S. Mironov, D. Shaysultanov, N. Stepanov, S. Zherebtsov, Mater. Sci. Eng. A 836 (2022) 142720. [12] Y. Qiu, H. Yang, L. Tong, L. Wang, Metals (Basel) 11(2021) 1101. [13] I.R. Walker, Cryogenics 45 (2005) 87-108. [14] L. Zhang, M. Wen, M. Imade, S. Fukuyama, K. Yokogawa, Acta Mater. 56(2008) 3414-3421. [15] G. Han, J. He, S. Fukuyama, K. Yokogawa, Acta Mater. 46(1998) 4559-4570. [16] J. Han, J.-H. Nam, Y.-K. Lee, Acta Mater. 113(2016) 1-10. [17] D. Pérez Escobar, T. Depover, L. Duprez, K. Verbeken, M. Verhaege, Acta Mater. 60(2012) 2593-2605. [18] H.G.Nelson, in: C.L. Briant, S.K. Banerji (Eds.), Treatise On Materials Science & Technology, Elsevier, Amsterdam, Netherlands, 1983, pp. 275-359. [19] J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, D.W. Suh, Acta Mater. 60(2012) 4085-4092. [20] B. Sun, W. Krieger, M. Rohwerder, D. Ponge, D. Raabe, Acta Mater. 183(2020) 313-328. [21] B. Sun, W. Lu, B. Gault, R. Ding, S.K. Makineni, D. Wan, C.H. Wu, H. Chen, D. Ponge, D. Raabe, Nat. Mater. 20(2021) 1629-1634. [22] J. Yang, F. Huang, Z. Guo, Y. Rong, N. Chen, Mater. Sci. Eng. A 665 (2016) 76-85. [23] T. Michler, J. Naumann, Int. J. Hydrog. Energy 33 (2008) 2111-2122. [24] M. Koyama, T. Ogawa, D. Yan, Y. Matsumoto, C.C. Tasan, K. Takai, K. Tsuzaki, Int. J. Hydrog. Energy 42 (2017) 26423-26435. [25] X. Zhu, K. Zhang, W. Li, X. Jin, Mater. Sci. Eng. A 658 (2016) 400-408. [26] F. Haftlang, J.B. Seol, A. Zargaran, J. Moon, H.S. Kim, Acta Mater. 256(2023) 119115. [27] H. Kwon, P. Sathiyamoorthi, M.K. Gangaraju, A. Zargaran, J. Wang, Y.-U. Heo, S.Harjo, W. Gong, B.-J. Lee, H.S. Kim, Acta Mater. 248(2023) 118810. [28] T.P. Perng, C.J. Altstetter, Metall. Trans. A 18 (1987) 123-134. [29] A. Turnbull, R. Hutchings, Mater. Sci. Eng. A 177 (1994) 161-171. [30] B. Lee, B. Sundman, Stockholm, 1999. [31] W.-M. Choi, Y.H. Jo, D.G. Kim, S.S. Sohn, S. Lee, B.-J. Lee, Calphad 66 (2019) 101624. [32] W.-M. Choi, Y.H. Jo, D.G. Kim, S.S. Sohn, S. Lee, B.-J. Lee, J. Phase Equilibria. Diffus. 39(2018) 694-701. [33] D.G. Kim, M.C. Jo, Y.H. Jo, H.S. Kim, B.-J. Lee, S.S. Sohn, S. Lee, Mater. Sci. Eng. A 804 (2021) 140766. [34] P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solids 58 (2010) 206-226. [35] J. Yoo, M.C. Jo, D.W. Kim, H. Song, M. Koo, S.S. Sohn, S. Lee, Acta Mater. 196(2020) 370-383. [36] C. Park, N. Kang, S. Liu, J. Lee, E. Chun, S.-J. Yoo, Met.Mater. Int. 25(2019) 584-593. [37] J. Nam, J. Lee, H. Park, C. Park, C. Lee, J. Chung, S.-G. Lee, N.Kang, Met. Mater. Int. 29(2023) 1625-1636. [38] , 2004. [39] M. Wang, E. Akiyama, K. Tsuzaki, Corros. Sci. 49(2007) 4081-4097. [40] M. Nagumo, M. Nakamura, K. Takai, Metall. Mater. Trans. A 32 (2001) 339-347. [41] H. Yang, T.T. Nguyen, J. Park, U.B. Baek, Y.K. Lee, Met. Mater. Int. 29(2023) 303-314. [42] H.E. Kissinger, Anal. Chem. 29(1957) 1702-1706. [43] A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, R.J. Comstock, Metall. Mater. Trans. A 37 (2006) 1875-1886. [44] K.S. Kim, J.H. Kang, S.J. Kim, Corros. Sci. 180(2021) 109226. [45] Y. Fan, B. Zhang, J. Wang, E.-H. Han, W.Ke, J. Mater. Sci. Technol. 35(2019) 2213-2219. [46] J. Yang, H. Li, D. Hu, M. Dixon, Intermetallics 45 (2014) 89-95. [47] S. Zhang, N. Cui, W. Sun, Q. Li, Metals 11 (2021) 1231. [48] R. Eckner, L. Krüger, C. Ullrich, M. Wendler, O. Volkova, Int. J. Fract. 215(2019) 139-151. [49] L. Cho, P.E. Bradley, D.S. Lauria, M.L. Martin, M.J. Connolly, J.T. Benzing, E.J. Seo, K.O. Findley, J.G. Speer, A.J. Slifka, Acta Mater. 206(2021) 116635. [50] A. Shibata, T. Yonemura, Y. Momotani, M.-H. Park, S.Takagi, Y. Madi, J. Besson, N. Tsuji, Acta Mater. 210(2021) 116828. [51] Z. Guo, M. Zhao, C. Li, S. Chen, L. Rong, Mater. Sci. Eng. A 555 (2012) 77-84. [52] T. Michler, J. Naumann, M.P. Balogh, Mater. Sci. Eng. A 607 (2014) 71-80. [53] Z. Tarzimoghadam, D. Ponge, J. Klöwer, D. Raabe, Acta Mater. 128(2017) 365-374. [54] C.D. Beachem, Metall. Trans. 4 (1973) 1999-2000. [55] A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Mater. 60(2012) 5182-5189. [56] H. Hallberg, L. Banks-Sills, M. Ristinmaa, Eng. Fract. Mech. 79(2012) 266-280. [57] R. Chen, P. Jiang, X. Shao, G. Mi, C. Wang, Mater. Charact. 132(2017) 260-268. [58] C.Y. Huo, H.L. Gao, Mater. Charact. 55(2005) 12-18. [59] R.O. Ritchie, Mater. Sci. Eng. A 103 (1988) 15-28. [60] M. Koyama, Z. Zhang, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, C.C. Tasan, Science 355 (2017) 1055-1057. [61] S. Suresh, Metall. Trans. A 14 (1983) 2375-2385. [62] S. Suresh, R.O. Ritchie, Metall. Trans. A 13 (1982) 1627-1631. [63] S. Suresh, Eng. Fract. Mech. 18(1983) 577-593. [64] R.O. Ritchie, S. Suresh, Metall. Trans. A 13 (1982) 937-940. [65] S. Loehnert, T. Belytschko, Int. J. Fract. 145(2007) 1-8. [66] J.T. Burns, J. Boselli, Int. J. Fatigue 83 (2016) 253-268. [67] K. Lam, S. Phua, Eng. Fract. Mech. 40(1991) 585-592. [68] J.D. Hermida, A. Roviglione, Scr. Mater. 39(1998) 1145-1149. [69] L. Moro, E. Obiol, A.N. Roviglione, D. Hermida, A. Juan, J. Phys. D 31 (1998) 893-899. [70] A.E. Pontini, J.D. Hermida, Scr. Mater. 37(1997) 1831-1837. [71] X.W. Zhou, C. Nowak, R.S. Skelton, M.E. Foster, J.A. Ronevich, C. San Marchi, R.B. Sills, Int. J. Hydrog. Energy 47 (2022) 651-665. [72] R. Fussik, G. Egels, W. Theisen, S. Weber, Metals 11 (2021) 1170. [73] L. Liu, H. Gong, RSC Adv. 11(2021) 13644-13652. [74] A.M. Brass, A. Chanfreau, Acta Mater. 44(1996) 3823-3831. [75] D. Smirnova, S. Starikov, Comput. Mater. Sci. 230(2023) 112433. [76] S.M. Teus, V.F. Mazanko, J.M. Olive, V.G. Gavriljuk, Acta Mater. 69(2014) 105-113. [77] J. Crank, The Mathematics of Diffusion, Oxford University Press, Oxford, UK, 1979. [78] Ø. Grong, D. Grong, UK, 1997. [79] K. Verbeken, in: R.P. Gangloff, B.P. Somerday (Eds.), Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Woodhead Publishing, Cambridge, UK, 2012, pp. 27-55. [80] A. Turnbull, in: R.P. Gangloff, B.P. Somerday (Eds.), Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Woodhead Publishing, Cambridge, UK, 2012, pp. 89-128. [81] P.E.Irving, in: R.P. Gangloff, B.P. Somerday (Eds.), Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Woodhead Publishing, Cambridge, UK, 2012, pp. 430-468. [82] S.-H. Yu, S.-M. Lee, S. Lee, J.-H. Nam, J.-S. Lee, C.-M. Bae, Y.-K. Lee, Acta Mater. 172(2019) 92-101. [83] P. Gong, A. Turk, J. Nutter, F. Yu, B. Wynne, P. Rivera-Diaz-del-Castillo, W.Mark Rainforth, Acta Mater. 223(2022) 117488. [84] J.A. Ronevich, B.C. De Cooman, J.G. Speer, E. De Moor, D.K. Matlock, Metall. Mater. Trans. A 43 (2012) 2293-2301. [85] W.Y. Choo, J.Y. Lee, Metall. Trans. A 13 (1982) 135-140. [86] T. Depover, K. Verbeken, Mater. Sci. Eng. A 675 (2016) 299-313. [87] D.G. Lee, J.H. Kim, S.H. Kim, H.Y. Ha, T.H. Lee, J. Moon, D.W. Suh, Met. Mater. Int. 29(2023) 126-134. [88] A. Turk, S.D. Pu, D. Bombač, P.E.J.Rivera-Díaz-del-Castillo, E.I. Galindo-Nava, Acta Mater. 197(2020) 253-268. [89] Y.D. Park, I.S. Maroef, A. Landau, D.L. Olson, Weld. J. 81(2002) 27-35. [90] S. Ningshen, M. Uhlemann, F. Schneider, H.S. Khatak, Corros. Sci. 43(2001) 2255-2264. [91] D. Li, R.P. Gangloff, J.R. Scully, Metall. Mater. Trans. A 35 (2004) 849-864. [92] S.K. Dwivedi, M. Vishwakarma, Int. J. Hydrog. Energy 43 (2018) 21603-21616. [93] M.N. Elkot, B. Sun, X. Zhou, D. Ponge, D. Raabe, Acta Mater. 241(2022) 118392. [94] J. Song, W.A. Curtin, Nat. Mater. 12(2013) 145-151. [95] I.M. Robertson, Eng. Fract. Mech. 68(2001) 671-692. [96] P.J. Ferreira, I.M. Robertson, H.K. Birnbaum, Acta Mater. 47(1999) 2991-2998. [97] J.P. Chateau, D. Delafosse, T. Magnin, Acta Mater. 50(2002) 1507-1522. [98] I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren, Metall. Mater. Trans. B 46 (2015) 1085-1103. [99] A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solids 112 (2018) 403-430. [100] M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, I.M. Robertson, Acta Mater. 60(2012) 2739-2745. [101] A .A. Guzmán, J. Jeon, A. Hartmaier, R. Janisch, Materials 13 (2020) 5785. [102] T.C. Chen, S.T. Chen, L.W. Tsay, Int. J. Hydrog. Energy 39 (2014) 10293-10302. [103] Y. Ogawa, S. Okazaki, O. Takakuwa, H. Matsunaga, Scr. Mater. 157(2018) 95-99 . |
[1] | Hyun Wook Lee, Tak Min Park, Hye-Jin Kim, Jeongho Han. Correlation between pre-strain and hydrogen embrittlement behavior in medium-Mn steel [J]. J. Mater. Sci. Technol., 2025, 206(0): 62-73. |
[2] | Yan Zhang, Qizhe Ye, Yu Yan. Processing, microstructure, mechanical properties, and hydrogen embrittlement of medium-Mn steels: A review [J]. J. Mater. Sci. Technol., 2024, 201(0): 44-57. |
[3] | Yu Ding, Haiyang Yu, Meichao Lin, Michael Ortiz, Senbo Xiao, Jianying He, Zhiliang Zhang. Hydrogen trapping and diffusion in polycrystalline nickel: The spectrum of grain boundary segregation [J]. J. Mater. Sci. Technol., 2024, 173(0): 225-236. |
[4] | Yong Li, Tao Hu, Qian Li, Yang Wu, Ling Wang, Yang You, Biyun Wang. Evaluation of the stress corrosion crack growth behaviour of high-strength marine steel based on model of crack tip mechano-electrochemical effect [J]. J. Mater. Sci. Technol., 2024, 190(0): 93-105. |
[5] | Binglu Zhang, Zhaoxiang Ma, Yuan Ma, Yongqing Chen, Baolong Jiang, Yu Jia, Rongjian Shi, Lin Chen, Yang He, Lijie Qiao. In-situ scanning Kelvin probe force microscopy on the diverse hydrogen trapping behaviours around incoherent NbC nanoprecipitates [J]. J. Mater. Sci. Technol., 2024, 194(0): 216-224. |
[6] | Shiqi Zhang, Luming Qi, Shilong Liu, Zhixian Peng, Y. Frank Cheng, Feng Huang, Jing Liu. Synergistic effects of Nb and Mo on hydrogen-induced cracking of pipeline steels: A combined experimental and numerical study [J]. J. Mater. Sci. Technol., 2023, 158(0): 156-170. |
[7] | Hongxu Cheng, Hong Luo, Zhimin Pan, Xuefei Wang, Qiancheng Zhao, Yu Fu, Xiaogang Li. Effects of laser powder bed fusion process parameters on microstructure and hydrogen embrittlement of high-entropy alloy [J]. J. Mater. Sci. Technol., 2023, 155(0): 211-226. |
[8] | Xinfeng Li, Jing Yin, Jin Zhang, Yanfei Wang, Xiaolong Song, Yong Zhang, Xuechong Ren. Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review [J]. J. Mater. Sci. Technol., 2022, 122(0): 20-32. |
[9] | Z.H. Cao, B.N. Zhang, M.X. Huang. Comparing hydrogen embrittlement behaviors of two press hardening steels: 2 GPa vs. 1.5 GPa grade [J]. J. Mater. Sci. Technol., 2022, 124(0): 109-115. |
[10] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[11] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[12] | Di Wan, Yan Ma, Binhan Sun, Seyed Mohammad Javad Razavi, Dong Wang, Xu Lu, Wenwen Song. Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope [J]. J. Mater. Sci. Technol., 2021, 85(0): 30-43. |
[13] | Min Cheol Jo, Selim Kim, Dong Woo Suh, Hong Kyu Kim, Yong Jin Kim, Seok Su Sohn, Sunghak Lee. Enhancement of ballistic performance enabled by transformation-induced plasticity in high-strength bainitic steel [J]. J. Mater. Sci. Technol., 2021, 84(0): 219-229. |
[14] | Ran Wei, Kaisheng Zhang, Liangbin Chen, Zhenhua Han, Tan Wang, Chen Chen, Jianzhong Jiang, Tingwei Hu, Fushan Li. Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures [J]. J. Mater. Sci. Technol., 2020, 57(0): 153-158. |
[15] | Yuefeng Jiang, Bo Zhang, Dongying Wang, Yu Zhou, Jianqiu Wang, En-Hou Han, Wei Kea. Hydrogen-assisted fracture features of a high strength ferrite-pearlite steel [J]. J. Mater. Sci. Technol., 2019, 35(6): 1081-1087. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||