J. Mater. Sci. Technol. ›› 2025, Vol. 204: 29-46.DOI: 10.1016/j.jmst.2024.03.033
• Research Article • Previous Articles Next Articles
Shaowu Fenga,b,1, Hailong Daia,b,1, Xingyue Suna,b, Kejian Jianga,b, Zhi Qiua,b, Xu Chena,b,c, Gang Chena,b,c,*
Received:
2023-11-18
Revised:
2024-02-19
Accepted:
2024-03-19
Published:
2025-01-01
Online:
2024-04-19
Contact:
*E-mail addresses: hldai@tju.edu.cn (H. Dai), agang@tju.edu.cn (G. Chen).
About author:
1 These authors contributed equally to this work.
Shaowu Feng, Hailong Dai, Xingyue Sun, Kejian Jiang, Zhi Qiu, Xu Chen, Gang Chen. New insight of the enhanced oxidation resistance of T91 steel in 450 °C liquid lead-bismuth eutectic by adding Al and Si element[J]. J. Mater. Sci. Technol., 2025, 204: 29-46.
[1] C.F. Smith, W.G. Halsey, N.W. Brown, J.J. Sienicki, A. Moisseytsev, D.C. Wade, J. Nucl. Mater. 376(2008) 255-259. [2] E. Serag, B. Caers, P. Schuurmans, S. Lucas, E. Haye, Surf. Coat. Technol. 441(2022) 128542. [3] C. Rubbia, C. Roche, J.A. Rubio, F. Carminati, Y. Kadi, P. Mandrillon, J.P.C. CERN-AT-95-44-ET, 1995. [4] V. Sobolev, J. Nucl. Mater. 362(2007) 235-247. [5] J. Zhang, N. Li, J. Nucl. Mater. 373(2008) 351-377. [6] X. Gong, R. Li, M. Sun, Q. Ren, T. Liu, M.P. Short, J. Nucl. Mater. 482(2016) 218-228. [7] C. Schroer, A. Skrypnik, O. Wedemeyer, J. Konys, Corros. Sci. 61(2012) 63-71. [8] Z. Zhu, Q. Zhang, J. Tan, X. Wu, H. Ma, Z. Zhang, Q. Ren, E.-H. Han, X.Wang, Corros. Sci. 204(2022) 110405. [9] A. Hojna, F. Di Gabriele, J. Nucl. Mater. 413(2011) 21-29. [10] Y. Zhang, H. He, H. Wang, G. Chen, X. An, Y. Wang, J. Alloy. Compd. 873(2021) 159817. [11] X. Gong, M.P. Short, T. Auger, E. Charalampopoulou, K. Lambrinou, Prog. Mater Sci. 126(2022) 100920. [12] R. Karimihaghighi, M. Naghizadeh, Mater. Corros. 74(2023) 1246-1255. [13] R. Priya, S. Ningshen, J. Nucl. Mater. 574(2023) 154181. [14] S. Guo, J. Zhang, W. Wu, W. Zhou, Prog. Mater Sci. 97(2018) 44 8-4 87. [15] V. Tsisar, S. Gavrilov, C. Schroer, E. Stergar, Corros. Sci. 174(2020) 108852. [16] J. Zhang, Corros. Sci. 51(2009) 1207-1227. [17] A.L. Johnson, E.P. Loewen, T.T. Ho, D. Koury, B. Hosterman, U. Younas, J. Welch, J.W. Farley, J. Nucl. Mater. 350(2006) 221-231. [18] J. Li, X. He, B. Xu, Z. Tang, C. Fang, G. Yang, Materials 15 (2022) 2862. [19] H. Shi, H. Wang, R. Fetzer, A. Heinzel, A. Weisenburger, K. Wang, A. Jianu, G. Müller, Corros. Sci. 193(2021) 109871. [20] H. Evans, D. Hilton, R. Holm, S. Webster, Oxid. Met. 19(1983) 1-18. [21] H. Zhang, X. Liu, Y. Xu, L. Zhao, T. Peng, C. Qin, R. Yu, Z. Wang, C. Yao, Corros. Sci. 225(2023) 111553. [22] Z. Ma, T. Zhou, P. Jin, X. Gao, C. Liu, H. Chang, L. Pang, T. Shen, Z. Wang, Corros. Sci. 222(2023) 111411. [23] L. Zhang, W. Yan, Q. Shi, Y. Li, Y. Shan, K. Yang, Corros. Sci. 167(2020) 108519. [24] Proriol Serre, J.-B. Vogt, Eng.Fail. Anal. 139(2022) 106443. [25] G. Müller, A. Heinzel, J. Konys, G. Schumacher, A. Weisenburger, F. Zimmer-mann, V.Engelko, A. Rusanov, V. Markov, J. Nucl. Mater. 335(2004) 163-168. [26] J. Li, X. Zhang, H. Ma, L. Xiong, S. Liu, Q. Ren, Z. Pang, Acta Metall. Sin.-Engl. Lett. 36(2023) 732-744. [27] M. Del Giacco, A. Weisenburger, A. Jianu, F. Lang, G. Mueller, J. Nucl. Mater. 421(2012) 39-46. [28] W. Zhang, Y. Zhong, X. Qiu, Q. Li, H. Yue, Y. Zhou, J. Deng, J. Yang, H. Liu, Q. Li, N. Liu, J. Yang, Surf. Coat. Technol. 462(2023) 129477. [29] H. Wang, G. Liang, C. Meng, X. An, Y. Wang, X. He, J. Mater. Res.Technol. 23(2023) 3492-3504. [30] J. Lim, A. Mariën, K. Rosseel, A. Aerts, J. Van den Bosch, J.Nucl. Mater. 429(2012) 270-275. [31] J. Wang, S. Lu, L. Rong, D. Li, Y. Li, Corros. Sci. 111(2016) 13-25. [32] R.P. Matthews, R.D. Knusten, J.E. Westraadt, T. Couvant, Corros. Sci. 125(2017) 175-183. [33] Z. Shen, J. Dohr, S. Lozano-Perez, Corros. Sci. 155(2019) 209-216. [34] B. Wu, Y. Zhang, F. Meng, Z. Zhang, Y. Li, J. Wang, E.-H. Han, H.Ming, Acta Mater. 233(2023) 119083. [35] O. Klok, K. Lambrinou, S. Gavrilov, J. Lim, I. De Graeve, J. Nucl. Rad.Sci. 4(2018) 031019. [36] L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard, G. Santarini, Corros. Sci. 50(2008) 2537-2548. [37] Y. Kurata, J. Nucl. Mater. 415(2011) 254-259. [38] V. Tsisar, C. Schroer, O. Wedemeyer, A. Skrypnik, J. Konys, J. Nucl. Mater. 494(2017) 422-438. [39] L. Chen, V. Tsisar, M. Wang, C. Schroer, Z. Zhou, Corros. Sci. 189(2021) 109591. [40] C. Schroer, J. Konys, Physical chemistry of corrosion and oxygen control in liq-uid lead and lead bismuth eutectic, Forschungszentrum Karlsruhe Karlsruhe, 20 07.https://doi.org/10.5445/IR/270 069895 . [41] G. Müller, G. Schumacher, F. Zimmermann, J. Nucl. Mater. 278(20 0 0) 85-95. [42] Z. Shen, M. Meisnar, K. Arioka, S. Lozano-Perez, Acta Mater. 165(2019) 73-86. [43] C. Schroer, V. Koch, O. Wedemeyer, A. Skrypnik, J. Konys, J. Nucl. Mater. 469(2016) 162-176. [44] A. Weisenburger, A. Heinzel, G. Müller, H. Muscher, A. Rousanov, J. Nucl. Mater. 376(2008) 274-281. [45] J. Xie, S. Zhang, J. Dong, S. Wang, H. Wang, W. Kuang, Corros. Sci. 208(2022) 110668. [46] M.P. Short, R.G. Ballinger, H.E. Hänninen, J. Nucl. Mater. 434(2013) 259-281. [47] H. Wang, H. Yu, S. Kondo, N. Okubo, R. Kasada, Corros. Sci. 175(2020) 108864. [48] H. Dai, S. Shi, L. Yang, J. Hu, C. Liu, C. Guo, X. Chen, Corros. Sci. 176(2020) 108917. [49] H. Dai, S. Shi, L. Yang, C. Guo, X. Chen, Corros. Rev. 39(2021) 313-337. [50] H. Dai, S. Shi, C. Guo, X. Chen, Corros. Sci. 166(2020) 108443. [51] H. Dai, S. Shi, C. Guo, Z. Ning, Y. Kuang, X. Chen, Corros. Sci. 224(2023) 111489. [52] D.R. Gaskell, D.E. Laughlin, Introduction to the Thermodynamics of Materials, CRC Press, Boca Raton, USA, 2017. [53] O. Kubaschewski, Int. Ser. Mater. Sci. Technol. 24(1977) 478. [54] Y. Kurata, J. Nucl. Mater. 437(2013) 401-408. [55] H. Dai, S. Zhang, Y. Li, J. Yu, Y. Kuang, F. Xuan, X. Chen, J. Mater. Sci.Technol. 191(2024) 33-48. [56] F. Barbier, A. Rusanov, J. Nucl. Mater. 296(2001) 231-236. [57] C. Schroer, O. Wedemeyer, J. Novotny, A. Skrypnik, J. Konys, in: 2012 20th In-ternational Conference on Nuclear Engineering and the ASME 2012 Power Con-ference, Anaheim, California, USA, July 30-August 3, 2012, pp. 325-335. [58] S.J. Tian, Oxid. Met. 93(2020) 183-194. [59] F. Barbier, G. Benamati, C. Fazio, A. Rusanov, J. Nucl. Mater. 295(2001) 149-156. [60] F. Balbaud-Celerier, P. Deloffre, A. Terlain, A. Rusanov, EDP Sci. 12(2002) 177-190. [61] L. Ma ouis, B.-C. Fanny, Nucl. Eng. Des. 241(2011) 1288-1294. |
[1] | Yong Fan, Jinfeng Nie, Zhigang Ding, Yujing Zhang, Xiang Chen, Wei Liu, Sen Yang, Sida Liu, Xiangfa Liu, Yonghao Zhao. A facile high-efficiency preparation strategy for Al-containing multi-component boride microcrystals with superior comprehensive performance [J]. J. Mater. Sci. Technol., 2025, 204(0): 190-203. |
[2] | Cheng-Feng Du, Yaqing Xue, Hongwei Liang, Chuanchao Wang, Qingyan Zeng, Jinjin Wang, Lili Xue, Hong Yu. Exploring the oxidation behaviors of the Ti-V-Cr-Mo high-entropy MAX at 800 °C for its self-lubricity [J]. J. Mater. Sci. Technol., 2024, 187(0): 49-62. |
[3] | Han-Ming Zhang, Lihao Zuo, Jiakang Li, Shaofei Zhang, Junxia Guo, Xiao-Pu Li, Gang Liu, Peng Wang, Jinfeng Sun. Research and strategies for efficient electrocatalysts towards anodic oxygen evolution reaction in seawater electrolysis system [J]. J. Mater. Sci. Technol., 2024, 187(0): 123-140. |
[4] | H. Xu, S.F. Yang, E.H. Wang, C.Y. Guo, Y.S. Liu, X.M. Hou, Y.L. Zhang. Cognition on oxidation behavior of Ni-based superalloy GH4742 when exposed to water vapor [J]. J. Mater. Sci. Technol., 2024, 174(0): 15-22. |
[5] | Chao Liu, Le Qi, Tielong Shen, Peng Jin, Zhiguang Wang. TEM comparative study on oxide films of 316L and T91 steel exposed to 350-500 °C steam [J]. J. Mater. Sci. Technol., 2024, 175(0): 10-21. |
[6] | Peng Hu, Xinyu Gong, Hexiong Liu, Wenyuan Zhou, Jinshu Wang. A novel dissolution-precipitation strategy to accelerate the sintering of yttrium oxide dispersion strengthened tungsten alloy with well-regulated structure [J]. J. Mater. Sci. Technol., 2024, 184(0): 43-53. |
[7] | Bo Meng, Lanlan Yang, Qunchang Wang, Jinlong Wang, Minghui Chen, Shenglong Zhu, Fuhui Wang. Retarding the effect of Ta on high-temperature oxidation of sputtered nanocrystalline coatings [J]. J. Mater. Sci. Technol., 2024, 184(0): 195-206. |
[8] | Qing-Ming Wang, Xu-Han Chen, Qiu-Feng Lü, Qilang Lin. 2D Ti3C2Tx modifie d with nano-AgPNPs antioxidant constructed hierarchical interface for high-throughput oily wastewater separation [J]. J. Mater. Sci. Technol., 2024, 185(0): 133-146. |
[9] | H. Bai, R. Su, R.Z. Zhao, C.L. Hu, L.Z. Ji, Y.J. Liao, Y.N. Zhang, Y.X. Li, X.F. Zhang. Oxidation behavior and microstructural evolution of FeCoNiTiCu five-element high-entropy alloy nanoparticles [J]. J. Mater. Sci. Technol., 2024, 177(0): 133-141. |
[10] | Yao Du, Zheng Chen, Yiliang Lu, Cheng Wang, Lanlan Yang, Shenglong Zhu, Fuhui Wang. Water vapor effects on the oxidation resistance of modified potassium silicate coating at high temperature [J]. J. Mater. Sci. Technol., 2024, 176(0): 25-35. |
[11] | Pengxiang Zhao, Hui Ma, Xiaobing Li, Ming Gao, Yingche Ma, Kui Liu. Insights into the role of W/B alloying on high-temperature oxidation behavior of Ti42Al5Mn alloy [J]. J. Mater. Sci. Technol., 2024, 178(0): 188-200. |
[12] | Ming-Lu Huang, Cheng-Long Luo, Chang Sun, Kun-Yan Zhao, Yingqing Ou, Ming Wang. Surface structural engineering of carbonyl iron powder for enhancing microwave absorption and anti-oxidation performance [J]. J. Mater. Sci. Technol., 2024, 178(0): 201-209. |
[13] | Xiaohua Yang, Wentao Sun, Jiatang Chen, Yang Gao, Rongxian Zhang, Qun Luo, Tao Lyu, Lei Du. The degradation of cathodic Fe/N/C catalyst in PEMFCs: The evolution of remanent active sites after demetallation [J]. J. Mater. Sci. Technol., 2024, 173(0): 100-106. |
[14] | Jiajie Cai, Bowen Liu, Shumin Zhang, Linxi Wang, Zhen Wu, Jianjun Zhang, Bei Cheng. ZnIn2S4/MOF S-scheme photocatalyst for H2 production and its femtosecond transient absorption mechanism [J]. J. Mater. Sci. Technol., 2024, 197(0): 183-193. |
[15] | Duowen Ma, Yansong Jia, Yang Li, Haibin Yang, Fengzhi Wang, Xinyu Zheng, Guining Shao, Qi Xiong, Zhihao Shen, Min Liu, Zirui Lou, Chaohua Gu. Anion modulate the morphological and electronic structure of NiFe-based electrocatalyst for efficient urea oxidation-assisted water electrolysis [J]. J. Mater. Sci. Technol., 2024, 197(0): 207-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||