J. Mater. Sci. Technol. ›› 2024, Vol. 203: 126-142.DOI: 10.1016/j.jmst.2024.02.085
• Reserch Article • Previous Articles Next Articles
Y.-Z. Liua, Z.-L. Shib, Y.-B. Zhanga, M. Qinc, S.-P. Hua,d,*, X.-G. Songa,d,*, W. Fua, B.-J. Leee,*
Received:
2023-11-08
Revised:
2024-01-16
Accepted:
2024-02-13
Published:
2024-12-20
Online:
2024-12-16
Contact:
*E-mail addresses: Y.-Z. Liu, Z.-L. Shi, Y.-B. Zhang, M. Qin, S.-P. Hu, X.-G. Song, W. Fu, B.-J. Lee. Effect of temperature on the mechanical properties of Ni-based superalloys via molecular dynamics and crystal plasticity[J]. J. Mater. Sci. Technol., 2024, 203: 126-142.
[1] Y. Yin, J. Zhang, J. Gao, Z. Zhang, Q. Han, Z. Zan, Mater. Sci. Eng. A, 827 (2021), Article 142076. [2] Y. Luo, S.P. Hu, X.G. Song, A. Aprilia, Y.J. Yang, W. Zhou, Thin-Walled Struct., 190 (2023), Article 110915. [3] Y. Luo, X. Song, S. Hu, W. Fu, X. Chen, J. Cao, Weld. World, 66(2022), pp. 1999-2015. [4] C. Qi, F. Jiang, S. Yang, Compos. Part B-Eng., 227 (2021), Article 109393. [5] A. Plessis, N. Razavi, M. Benedetti, S. Murchio, M. Leary, M. Watson, D. Bhate, F. Berto, Prog. Mater. Sci., 125 (2022), Article 100918. [6] D. Gu, X. Shi, R. Poprawe, D.L. Bourell, R. Setchi, J. Zhu, Science, 372 (2021), p. eabg1487. [7] P. Wang, C. Gammer, F. Brenne, T. Niendorf, J. Eckert, S. Scudino, Compos. Part B-Eng., 147(2018), pp. 162-168. [8] P. Wang, C. Gammer, F. Brenne, K.G. Prashanth, R.G. Mendes, M.H. Rümmeli, T. Gemming, J. Eckert, S. Scudino, Mater. Sci. Eng. A, 711(2018), pp. 562-570. [9] B. Blakey, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, M. Leary, F. Berto, A. Plessis, Mater. Des., 209 (2021), Article 110008. [10] V. Romanova, O. Zinovieva, R. Balokhonov, E. Dymnich, E. Moskvichev, A. Filippov, D. Lychagin, Addit. Manuf., 48 (2021), Article 102415. [11] O. Zinovieva, V. Romanova, A. Zinoviev, O. Nekhorosheva, R. Balokhonov, Int. J. Mech. Sci., 244 (2023), Article 108089. [12] J. Liu, Z. Li, M. Huang, J. Zhu, L. Zhao, Y. Zhu, Int. J. Solids Struct., 281 (2023), Article 112435. [13] S.J. Youn, Y.K. Kim, H.S. Kim, K.A. Lee, Intermetallics, 153 (2023), Article 107784. [14] H.T. Jeong, W.J. Kim, J. Mater. Sci.Technol., 42(2020), pp. 190-202. [15] Y. Zhang, L. Xu, L. Zhao, D. Lin, M. Liu, W. Chen, Y. Han, J. Mater. Sci.Technol., 167(2023), pp. 14-26. [16] C. Wagner, G. Laplanche, Acta Mater., 244 (2023), Article 118541. [17] Y. Song, H. Zhu, D. Liu, X. Song, H. Bian, W. Fu, D. Lin, C. Tan, J. Cao, J. Mater. Sci.Technol., 182(2024), pp. 187-197. [18] Y.Z. Liu, J. Sun, H.L. Li, Y.Y. Song, S.P. Hu, X.G. Song, N. Guo, W.M. Long, J. Mater. Res., 38(2023), pp. 2838-2851. [19] Y. Qi, T. He, H. Xu, Y. Hu, M. Wang, M. Feng, J. Alloy. Compd., 871 (2021), Article 159516. [20] S.A. Roncancio, D.F. Arias, M.M. Gómez, J.C. Riaño, E. Restrepo, Appl. Surf. Sci., 258(2012), pp. 4473-4477. [21] X. Xing, F. Li, J. Liu, G. Cui, Z. Li, Y.F. Cheng, J. Mater. Sci.Technol., 176(2024), pp. 119-131. [22] Z. Pan, Y. Fu, Y. Wei, X. Yan, H. Luo, X. Li, Int. J. Mech. Sci., 219 (2022), Article 107098. [23] B. Chen, W.-P. Wu, M.-X. Chen, Comput. Mater. Sci., 202 (2022), Article 111015. [24] X. Zhang, X. Lu, J. Zhao, Q. Kan, Z. Li, G. Kang, Int. J. Plast., 150 (2022), Article 103201. [25] C.M. Pilgar, A.M. Fernandez, S. Lucarini, J. Segurado, Int. J. Plast., 153 (2022), Article 103250. [26] T. Fischer, S. Ulan kyzy, O. Munz, E. Werner, Comput. Mater. Sci., 190 (2021), Article 110270. [27] M. Bignon, Z. Ma, J.D. Robson, P. Shanthraj, Acta Mater., 247 (2023), Article 118735. [28] B. FrantzDale, S.J. Plimpton, M.S. Shephard, Eng. Comput., 26(2010), pp. 205-211. [29] J. Wang, H. Kwon, H.S. Kim, B.-J. Lee, npj Comput.Mater., 9(2023), p. 60. [30] S.K. Singh, A. Parashar, Chem. Phys., 266 (2021), Article 124549. [31] A. Jarlov, W. Ji, Z. Zhu, Y. Tian, R. Babicheva, R. An, H.L. Seet, M.L.S. Nai, K. Zhou, J. Alloy. Compd., 905 (2022), Article 164137. [32] K.T. Chen, T.J. Wei, G.C. Li, M.Y. Chen, Y.S. Chen, S.W. Chang, H.W. Yen, C.S. Chen, Mater. Chem. Phys., 271 (2021), Article 124912. [33] A. Stukowski, Model. Simul. Mater. Sci. Eng., 18 (2009), Article 015012. [34] J.W. Signorelli, M.A. Bertinetti, A. Roatta, J. Mater. Process. Technol., 287 (2021), Article 116517. [35] A. Cruzado, J. Llorca, J. Segurado, Int. J. Solids Struct., 122(2017), pp. 148-161. [36] J. Kobylinski, R. Lawitzki, M. Hofmann, C. Krempaszky, E. Werner, Contin. Mech. Thermodyn., 31(2019), pp. 691-702. [37] D. Ma, P. Eisenlohr, E. Epler, C.A. Volkert, P. Shanthraj, M. Diehl, F. Roters, D. Raabe, Acta Mater., 103(2016), pp. 796-808. [38] T. Fischer, E. Werner, S. Ulan kyzy, O.Munz, Contin. Mech. Thermodyn., 31(2019), pp. 703-713. [39] W.L. Zhou, Y.Z. Liu, B.Y. Wang, Y.Y. Song, C.N. Niu, S.P. Hu, Mater. Res. Express, 8 (2021), Article 066525. [40] H. Canistraro, E. Jordan, S. Shi, L. Favrow, F. Reed, J. Eng. Mater.Technol., 120(1998), pp. 242-247. [41] E.D. Cyr, M. Mohammadi, R.K. Mishra, K. Inal, Int. J. Plast., 70(2015), pp. 166-190. [42] F. Rotersa, M. Diehla, P. Shanthraj, P. Eisenlohr, C. Reuber, S.L. Wong, T. Maiti, Comput. Mater. Sci., 158(2019), pp. 420-478. [43] M.A. Groeber, M.A. Jackson, Integr. Mater. Manuf. Innov., 3(2014), pp. 56-72. [44] M. Yaghoobi, K.S. Stopka, A. Lakshmanan, V. Sundararaghavan, J.E. Allison, D.L.McDowell, npj Comput.Mater., 7(2021), p. 38. [45] Q. Ding, H. Bei, X. Wei, Y.F. Gao, Z. Zhang, Mater. Today Nano, 14 (2021), Article 100110. [46] H. Xie, Z. Ma, W. Zhang, H. Zhao, L. Ren, J. Mater. Sci.Technol., 170(2024), pp. 186-199. [47] H. Xie, Z. Ma, W. Zhang, H. Zhao, L. Ren, J. Mater. Sci.Technol., 175(2024), pp. 72-79. [48] P.M. Larsen, S. Schmidt, J. Schiøtz, Model. Simul. Mater. Sci. Eng., 24 (2016), Article 055007. [49] H. Wang, L. Chen, B. Dovgyy, W. Xu, A. Sha, X. Li, H. Tang, Y. Liu, H. Wu, M.S. Pham, Addit. Manuf., 39 (2021), Article 101853. [50] I. Gutierrez, D. Raabe, Acta Mater., 60(2012), pp. 5791-5802. [51] R. Ghiaasiaan, M. Muhammad, P.R. Gradl, S. Shao, N. Shamsaei, Mater. Res. Lett., 9(2021), pp. 308-314. [52] Y. Gao, Y. Ding, Y. Ma, J. Chen, X. Wang, J. Xu, Mater. Sci. Eng. A, 831 (2022), Article 142188. [53] M. Liu, Z. Liu, B. Li, F. Qi, W. Peng, J. Mater. Res.Technol., 26(2023), pp. 5626-5637. [54] S.F. Liu, Y. Wu, H.T. Wang, W.T. Lin, Y.Y. Shang, J.B. Liu, K. An, X.J. Liu, H. Wang, Z.P. Lu, J. Alloy. Compd., 792(2019), pp. 444-455. [55] Y. Liu, H. Yang, Y. Liu, B. Jiang, J. Ding, R. Woodward, Acta Mater., 53(2005), pp. 3625-3634. [56] P. Wu, Y. Zhang, L. Han, K. Gan, D. Yan, W. Wu, L. He, Z. Fu, Z. Li, Acta Mater., 261 (2023), Article 119389. [57] E. Vacchieri, A. Costa, G. Roncallo, G. Cacciamani, Mater. Sci. Technol., 33(2017), pp. 1100-1107. [58] H.M. Tawancy, Metallogr. Microstruct. Anal., 7(2018), pp. 288-297. [59] A.N. Jinoop, C.P. Paul, J. Ganesh Kumar, V. Anilkumar, R. Singh, S. Rao, K.S. Bindra, J. Alloy. Compd., 868 (2021), Article 159207. [60] Y.Q. Wang, C. Yuan, B. Zhang, X.Y. Gao, S.C. Qiao, X. Wen, Y.P. Chen, F.Z. Wang, Mater. Charact., 206 (2023), Article 113422. [61] Y.Q. Wang, C. Yuan, J.X. Wei, X.Y. Gao, Y.P. Chen, W.W. Kong, B. Zhang, X. Wen, X. Liu, S. Liu, J. Mater. Res.Technol., 24(2023), pp. 2743-2756. [62] X.-Z. Wu, L.-L. Liu, R. Wang, Q. Liu, Chin. Phys. B, 23 (2014), Article 066104. [63] N. Bernstein, E. Tadmor, Phys. Rev. B, 69 (2004), Article 094116. [64] C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li, S.X. Li, Acta Mater., 54(2006), pp. 655-665. [65] G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater., 118(2016), pp. 152-163. [66] A. Charmi, R. Falkenberg, L. Ávila, G. Mohr, K. Sommer, A. Ulbricht, M. Sprengel, R. Saliwan Neumann, B. Skrotzki, A. Evans, Mater. Sci. Eng. A, 799 (2021), Article 140154. [67] K. Somlo, B.H. Frodal, C.V. Funch, K. Poulios, G. Winther, O.S. Hopperstad, T. Børvik, C.F. Niordson, Eur. J. Mech. A-Solids, 94 (2022), Article 104506. [68] L. Kuna, A.J. Birnbaum, K. Teferra, Addit. Manuf., 78 (2023), Article 103830. [69] F. Bachmann, R. Hielscher, H. Schaeben, Ultramicroscopy, 111(2011), pp. 1720-1733. |
[1] | H. Xu, S.F. Yang, E.H. Wang, C.Y. Guo, Y.S. Liu, X.M. Hou, Y.L. Zhang. Cognition on oxidation behavior of Ni-based superalloy GH4742 when exposed to water vapor [J]. J. Mater. Sci. Technol., 2024, 174(0): 15-22. |
[2] | Junhui Tang, Hongtao Yang, Bingnan Qian, Yufeng Zheng, Philippe Vermaut, Frédéric Prima, Fan Sun. TWIP-assisted Zr alloys for medical applications: Design strategy, mechanical properties and first biocompatibility assessment [J]. J. Mater. Sci. Technol., 2024, 184(0): 32-42. |
[3] | Yi Zhang, Yiming Zhong, Yongxin Cheng, Neng He, Lianlong He, Zhenhuan Gao, Xiufang Gong, Chunlin Chen, Hengqiang Ye. Microstructural evolution and micro-mechanical properties of non-isothermal solidified zone in TLP bonded Ni-based superalloy joints [J]. J. Mater. Sci. Technol., 2024, 185(0): 9-22. |
[4] | Y.Q. Wang, F.Y. Li, J.X. Su, R.H. Duan, Z.A. Luo, G.M. Xie. Enhancing strength and ductility in the nugget zone of friction stir welded 7Mn steel via tailoring austenitic stability [J]. J. Mater. Sci. Technol., 2024, 185(0): 174-185. |
[5] | Xiang Su, Yuan Lei, Yang Chen, Hongjie Qu, Zhixiang Qi, Gong Zheng, Xu Liu, Henggao Xiang, Guang Chen. Precipitating thermally reinforcement phase in aluminum alloys for enhanced strength at 400 °C [J]. J. Mater. Sci. Technol., 2024, 172(0): 71-82. |
[6] | Hongyi Li, Fuhua Cao, Tong Li, Yuanyuan Tan, Yan Chen, Haiying Wang, Peter K. Liaw, Lanhong Dai. Enhanced plasticity in refractory high-entropy alloy via multicomponent ceramic nanoparticle [J]. J. Mater. Sci. Technol., 2024, 194(0): 51-62. |
[7] | Y.H. Zhang, H. Li, Z.W. Yang, X. Liu, Q.F. Gu. Microstructure evolution and shape memory behaviors of Ni47Ti44Nb9 alloy subjected to multistep thermomechanical loading with different prestrain levels [J]. J. Mater. Sci. Technol., 2024, 171(0): 80-93. |
[8] | Shubin Wang, Da Shu, Peiying Shi, Xianbing Zhang, Bo Mao, Donghong Wang, Peter.K. Liaw, Baode Sun. TiZrHfNb refractory high-entropy alloys with twinning-induced plasticity [J]. J. Mater. Sci. Technol., 2024, 187(0): 72-85. |
[9] | You Wang, Wei Guo, Yinkai Xie, Huaixue Li, , Caiyou Zeng, Ming Xu, Hongqiang Zhang. In-situ monitoring plume, spattering behavior and revealing their relationship with melt flow in laser powder bed fusion of nickel-based superalloy [J]. J. Mater. Sci. Technol., 2024, 177(0): 44-58. |
[10] | Chuan Guo, Zhen Xu, Gan Li, Jingchen Wang, Xiaogang Hu, Ying Li, Xiaohan Chen, Hui Liu, Le Cheng, Shiyu Zhong, Qiang Zhu, Jian Lu. Printability, microstructures and mechanical properties of a novel Co-based superalloy fabricated via laser powder bed fusion [J]. J. Mater. Sci. Technol., 2024, 189(0): 96-109. |
[11] | Jijun Xin, Hengcheng Zhang, Bingkun Lyu, Panyi Liang, Mebrouka Boubeche, Fuzhi Shen, Wei Wang, Wentao Sun, Li Shi, Ruinan Ma, Xinran Shan, Chuanjun Huang, Laifeng Li. Mechanical performance and deformation mechanisms of ultrastrong yield strength Fe-Cr-Ni-Mn-N austenitic stainless steel at 4.2 Kelvin [J]. J. Mater. Sci. Technol., 2024, 189(0): 191-202. |
[12] | Chen Liu, Wenchao Yang, Jiarun Qin, Pengfei Qu, Haitao Fu, Qiang Wang, Jun Zhang, Lin Liu. Nucleation and transition sequences of TCP phases during heat-exposure in a Re-containing Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2024, 202(0): 165-173. |
[13] | Wuqiang He, Feng Liu, Liming Tan, Lan Huang, Shiwen He, Caihe Fan. Flow behaviors and microstructural evolutions of nickel-based ODS superalloys during hot deformation [J]. J. Mater. Sci. Technol., 2024, 200(0): 13-26. |
[14] | Jia-Qi Han, Mei-Jun Liu, Javad Mostaghimi, Guan-Jun Yang. Solid dust induced roughening and overheating of TBC-coated superalloy [J]. J. Mater. Sci. Technol., 2024, 180(0): 69-79. |
[15] | Xue Zhang, Yahang Mu, Nannan Lu, Qi Li, Shaofeng Chen, Yizhou Zhou, Xiaofeng Sun, Jingjing Liang, Jinguo Li. Effect of solid solution elements on cracking susceptibility of Ni-based superalloys during additive manufacturing [J]. J. Mater. Sci. Technol., 2024, 190(0): 218-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||