J. Mater. Sci. Technol. ›› 2024, Vol. 199: 75-85.DOI: 10.1016/j.jmst.2024.01.094
• Research article • Previous Articles Next Articles
Linping Baoa, Yushuai Jiaa, Xiaohui Renb, Xin Liua,*, Chunhui Daic, Sajjad Alid,*, Mohamed Bououdinad, Zhanghui Lua, Chao Zenga,*
Received:
2023-11-14
Revised:
2024-01-12
Accepted:
2024-01-21
Published:
2024-11-10
Online:
2024-11-07
Contact:
*E-mail addresses: Linping Bao, Yushuai Jia, Xiaohui Ren, Xin Liu, Chunhui Dai, Sajjad Ali, Mohamed Bououdina, Zhanghui Lu, Chao Zeng. Cr dopants and S vacancies in ZnS to trigger efficient photocatalytic H2 evolution and CO2 reduction[J]. J. Mater. Sci. Technol., 2024, 199: 75-85.
[1] J.Q. Pan, G.S. Xiao, J.J. Niu, Y.Y. Fu, J. Cao, J.J. Wang, Y.Y. Zheng, M. Zhu, C.R. Li, J. Cleaner Prod. 380(2022) 135037. [2] S.Y. Wang, Z.W. Ai, X.W. Niu, W.J. Yang, R. Kang, Z.Y. Lin, A. Waseem, L. Jiao, H. L. Jiang, Adv. Mater. 35(2023) 2302512. [3] S.J. Bai, W.H. Jing, G.W. He, C. Liao, F. Wang, Y. Liu, L.J. Guo, ACS Nano 17 (2023) 10976-10986. [4] G.T. Sun, J.W. Shi, S.M. Mao, D.D. Ma, C. He, H.K. Wang, Y.H. Cheng, Chem. Eng. J. 429(2022) 132382. [5] H. Pang, F. Ichihara, X.G. Meng, L.J. Li, Y.Q. Xiao, W. Zhou, J.H. Ye, J. Energy Chem. 86(2023) 391-398. [6] J.L. Wu, Y. Zhang, P. Lu, G.Q. Fang, X. Li, W.W. Yu, Z.Y. Zhang, B. Dong, Appl. Catal. B 286 (2021) 119944. [7] H. Moon, S. Kim, S.W. Joo, M. Kim, N.K. Park, J.I. Baek, H.J. Ryu, J. Kim, N. Son M. Kang, Nano Today 49 (2023) 101785. [8] Y.M. Zhang, J.H. Zhao, H. Wang, B. Xiao, W. Zhang, X.B. Zhao, T.P. Lv, M. Thanga- muthu, J.Zhang, Y. Guo, J.N. Ma, L.N. Lin, J.W. Tang, R. Huang, Q.J. Liu, Nat. Commun. 13(2022) 58. [9] Y.X. Yang, Y.X. Pan, X. Tu, C.J. Liu, Nano Energy 101 (2022) 107613. [10] H.T. Fan, Y.J. Jin, K.C. Liu, W.S. Liu, Adv. Sci. 9(2022) 2104579. [11] J.Q. Xu, Z.Y. Ju, W. Zhang, Y. Pan, J.F. Zhu, J.W. Mao, X.L. Zheng, H.Y. Fu, M. L. Yuan, H. Chen, R.X. Li, Angew. Chem.-Int. Edit. 60(2021) 8705-8709. [12] Y. Liu, Z.F. Hu, J.C. Yu, Chem. Mater. 32(2020) 1488-1494. [13] S.Q. Zhang, Z.F. Zhang, Y.M. Si, B. Li, F. Deng, L.X. Yang, X. Liu, W.L. Dai, S.L. Luo, ACS Nano 15 (2021) 15238-15248. [14] N. Zhang, A. Jalil, D.X. Wu, S.M. Chen, Y.F. Liu, C. Gao, W. Ye, Z.M. Qi, H.X. Ju, C. M. Wang, X.J. Wu, L. Song, J.F. Zhu, Y.J. Xiong, J. Am. Chem.Soc. 140(2018) 9434-9443. [15] H. Cao, J.W. Xue, Z.Y. Wang, J.J. Dong, W.J. Li, R.Y. Wang, S. Sun, C. Gao, Y.S. Tan, X. D. Zhu, J. Bao, J. Mater. Chem. A 9 (2021) 16339-16344. [16] S. Klosek, D. Raftery, J. Phys. Chem. B 105 (2001) 2815-2819. [17] S.Q. Peng, R. An, Y.X. Li, G.X. Lu, S.B. Li, Int. J. Hydrog. Energy 37 (2012) 1366-1374. [18] M. Setvín, U. Aschauer, P. Scheiber, Y.F. Li, W.Y. Hou, M. Schmid, A. Selloni, U. Diebold, Science 341 (2013) 988-991. [19] R. Beura, R. Pachaiappan, P. Thangadurai, Appl. Surf. Sci. 433(2018) 887-898. [20] D.J. Jeejamol, K.S.J.Aultrin, M.D. Anand, Opt. Quant. Electron. 54(2022) 291. [21] X.M. Zhou, N. Liu, T. Yokosawa, A. Osvet, M.E. Miehlich, K. Meyer, E. Spiecker, P. Schmuki, ACS Appl. Mater. Interfaces 10 (2018) 29532-29542. [22] N. Yao, P. Li, Z.R. Zhou, Y.M. Zhao, G.Z. Cheng, S.L. Chen, W. Luo, Adv. Energy Mater. 9(2019) 1902449. [23] W.X. Zeng, S. Cao, L.L. Qiao, A.Q. Zhu, Q.Y. Ma, X.W. Xu, Y. Chen, J. Pan, Inorg. Chem. Front. 6(2019) 3057-3062. [24] C. Gomez-Polo, S. Larumbe, A. Gil, D. Muñoz, L.R. Fernández, L.F. Barquín, A. García-Prieto, M.L. Fdez-Gubieda, A. Muela, Surf. Interfaces 22 (2021) 100867. [25] Z.W. Xiong, L.H. Cao, J. Alloy. Compd. 773(2019) 828-837. [26] B. Poornaprakash, P. Puneetha, M.S.P.Reddy, S. Sangaraju, P.Rosaiah, B.A. Al-Asbahi, D.Y. Lee, Y.L. Kim, J. Mater. Sci.: Mater. Electron. 34(2023) 1614. [27] B. Poornaprakash, P. Puneetha, S. Sangaraju, Y.J. Yeon, B.A.Al-Asbahid, D.Y. Lee, S. Ramu, Y.L. Kim, Mater. Lett. 340(2023) 134186. [28] G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6(1996) 15-50. [29] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186. [30] G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561. [31] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A.Con- stantin, X.Zhou, K. Burke, Phys. Rev. Lett. 100(2008) 136406. [32] R.G. Parr, W. Yang, Int. J. Quantum Chem. 47(1993) 101. [33] G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36(2006) 354-360. [34] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 108 (2004) 17886-17892. [35] D.F. Hou, X.L. Hu, W.K. Ho, P. Hu, Y.H. Huang, J. Mater. Chem. A 3 (2015) 3935. [36] D.M. Zhao, C.L. Dong, B. Wang, C. Chen, Y.C. Huang, Z.D. Diao, S.Z. Li, L.J. Guo, S.H. Shen, Adv. Mater. 31(2019) 1903545. [37] Z.J. Zhang, Y.X. Luo, S.W. Liu, Q.L. Yao, S.J. Qing, Z.H. Lu, J. Mater. Chem. A 7 (2019) 21438-21446. [38] J.Z. Tian, X.F. Cao, T. Sun, J. Fan, H. Miao, Z. Chen, D. Li, E.Z. Liu, Y.H. Zhu, Chem. Eng. J. 471(2023) 144587. [39] K.Q. Xu, J. Shen, S.Y. Zhang, D.F. Xu, X.H. Chen, J. Mater. Sci.Technol. 121(2022) 236-244. [40] Y.H. Ma, X. Aihemaiti, K.Z. Qi, S.Y. Wang, Y.J. Shi, Z.H. Wang, M.H. Gao, F.H. Gai, Y. L. Qiu, J. Mater. Sci.Technol. 156(2023) 217-229. [41] Y.H. Lv, W.Q. Yao, R.L. Zong, Y.F. Zhu, Sci. Rep. 6(2016) 19347. [42] W.H. Xue, H.L. Sun, X.Y. Hu, X. Bai, J. Fan, E.Z. Liu, Chin. J. Catal. 43(2022) 234-245. [43] Z. Chen, T.L. Ma, Z.J. Li, W.J. Zhu, L.L. Li, J. Mater. Sci.Technol. 179(2024) 198-207. [44] Q. Niu, Z. Cheng, Q.S. Chen, G.C. Huang, J.Y. Lin, J.H. Bi, L. Wu, ACS Sustain. Chem. Eng. 9(2021) 1333-1340. [45] Y. Xia, B.C. Zhu, X. Qin, W.K. Ho, J.G. Yu, Chem. Eng. J. 467(2023) 143528. [46] S. Ali, G. Yasin, R. Iqbal, X. Huang, J. Su, S. Ibraheem, Z. Zhang, X. Wu, F. Wahid, P. M. Ismail, L. Qiao, H. Xu, Mol. Catal. 524(2022) 112285. [47] G. Yasin, S. Ibraheem, S. Ali, M. Arif, S. Ibrahim, R. Iqbal, A. Kumar, M. Tabish, M. A. Mushtaq, A. Saad, H. Xu, W. Zhao, Mater. Today Chem. 23(2022) 100634. [48] S. Ibraheem, G. Yasin, A. Kumar, M.A. Mushtaq, S. Ibrahim, R. Iqbal, M. Tabish, S. Ali, A. Saad, Appl. Catal. B 304 (2022) 120987. [49] Y.Y. Yu, X.A. Dong, P. Chen, Q. Geng, H. Wang, J.Y. Li, Y. Zhou, F. Dong, ACS Nano 15 (2021) 14453-14464. [50] H.B. Yin, J.H. Li, Appl. Catal. B 320 (2023) 121927. [51] T.M. Di, B.C. Zhu, B. Cheng, J.G. Yu, J.S. Xu, J. Catal. 352(2017) 532-541. [52] Z.W. Wang, Q. Wan, Y.Z. Shi, H. Wang, Y.Y. Kang, S.Y. Zhu, S. Lin, L. Wu, Appl. Catal. B 288 (2021) 120000. [53] S. Ali, R. Iqbal, A. Khan, S.U. Rehman, M. Haneef, L. Yin, A.C.S.Appl, Nano Mater. 4(2021) 6893-6902. [54] P.M. Ismail, S. Ali, F. Raziq, M. Bououdina, H. Abu-Farsakh, P. Xia, X. Wu, H. Xiao, S. Ali, L. Qiao, Appl. Surf. Sci. 624(2023) 157073. [55] P.M. Ismail, S. Ali, S. Ali, J. Li, M. Liu, D. Yan, F. Raziq, F. Wahid, G. Li, S. Yuan, X. Wu, J. Yi, J.S. Chen, Q. Wang, L. Zhong, Y. Yang, P. Xia, L. Qiao, Adv. Mater. 35(2023) 2303047. [56] T. Liu, Q. Wang, G. Wang, X. Bao, Green Chem. 23(2021) 1212-1219. [57] T. Liu, S. Ali, Z. Lian, B. Li, D.S. Su, J. Mater. Chem. A 5 (2017) 21596-21603. |
[1] | Yuhan Liu, Jing Shang, Tong Zhu. Enhanced thermal-assisted photocatalytic CO2 reduction by RGO/H-CN two-dimensional heterojunction [J]. J. Mater. Sci. Technol., 2024, 176(0): 36-47. |
[2] | Rongan He, Yunyun Zheng, Jinru Feng, Qiuqi Mo, Kexin Gong, Difa Xu. In situ synthesis of flexible Bi7O9I3/carbon paper with enhanced photocatalytic activity [J]. J. Mater. Sci. Technol., 2024, 178(0): 112-119. |
[3] | Chaoqian Ai, Bing Luo, Chunyang Zhang, Yadi Wang, Baoyuan Wang, Lijing Ma, Dengwei Jing. N and O vacancies regulation over semiconductor heterojunction to synergistically boost photocatalytic hydrogen peroxide production [J]. J. Mater. Sci. Technol., 2024, 196(0): 237-247. |
[4] | Yanfeng Zhang, Zhenyi Zhang. Reversing free-electron transfer of sulfide cocatalyst for exceptional photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2024, 171(0): 147-149. |
[5] | Yajing Ren, Yunfeng Li, Guixu Pan, Ning Wang, Yan Xing, Zhenyi Zhang. Recent progress in CdS-based S-scheme photocatalysts [J]. J. Mater. Sci. Technol., 2024, 171(0): 162-184. |
[6] | Wenhan Chen, Meng Dai, Li Xiang, Shan Zhao, Shuguang Wang, Zuoli He. Assembling S-scheme heterojunction between basic bismuth nitrate and bismuth tungstate with promoting charges' separation for accelerated photocatalytic sulfamethazine degradation [J]. J. Mater. Sci. Technol., 2024, 171(0): 185-197. |
[7] | Jiani Qin, Yanli Dong, Xiaojuan Lai, Bo Su, Bao Pan, Chuanyi Wang, Sibo Wang. Oxygen vacancy-rich CoMoO4/Carbon nitride S-scheme heterojunction for boosted photocatalytic H2 production: Microstructure regulation and charge transfer mechanism [J]. J. Mater. Sci. Technol., 2024, 198(0): 176-185. |
[8] | Jing Yang, Juan Wang, Guohong Wang, Kai Wang, Jinmao Li, Li Zhao. In situ irradiated XPS investigation on S-scheme TiO2/Bi2S3 photocatalyst with high interfacial charge separation for highly efficient photothermal catalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2024, 189(0): 86-95. |
[9] | Feng Wang, Shunxin Zhang, Wenhao Jing, Haoran Qiu, Ya Liu, Liejin Guo. Double Z-scheme in SnO2/SnS2/Cu2SnS3 heterojunction for photocatalytic reduction of CO2 to ethanol [J]. J. Mater. Sci. Technol., 2024, 189(0): 146-154. |
[10] | Qi Wang, Hao Zhou, Jianying Qian, Biao Xue, Hao Du, Derek Hao, Yun Ji, Qiang Li. Ti3C2-assisted construction of Z-scheme MIL-88A(Fe)/Ti3C2/RF heterojunction: Multifunctional photocatalysis-in-situ-self-Fenton catalyst [J]. J. Mater. Sci. Technol., 2024, 190(0): 67-75. |
[11] | Jingjing Zhang, Yue Zhao, Kezhen Qi, Shu-yuan Liu. CuInS2 quantum-dot-modified g-C3N4 S-scheme heterojunction photocatalyst for hydrogen production and tetracycline degradation [J]. J. Mater. Sci. Technol., 2024, 172(0): 145-155. |
[12] | Jian Zhang, Chen Shao, Zhen Lei, Yuanchun Li, Haina Bai, Lanhe Zhang, Guangqin Ren, Xinyan Wang. Treatment of antibiotics in water by SO3H-modified Ti3C2 Mxene photocatalytic collaboration with g-C3N4 [J]. J. Mater. Sci. Technol., 2024, 194(0): 124-137. |
[13] | Tao Shan, Yanbo Li, Sunzai Ke, Bo Su, Lijuan Shen, Sibo Wang, Xuhui Yang, Min-Quan Yang. An embedded ReS2@MAPbBr3 heterostructure with downhill interfacial charge transfer for photocatalytic upgrading of biomass-derived alcohols to aldehydes and H2 [J]. J. Mater. Sci. Technol., 2024, 179(0): 155-165. |
[14] | Hongjun Dong, Lei Tong, Pingfan Zhang, Daqiang Zhu, Jizhou Jiang, Chunmei Li. Built-in electric field intensified by photothermoelectric effect drives charge separation over Z-scheme 3D/2D In2Se3/PCN heterojunction for high-efficiency photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2024, 179(0): 251-261. |
[15] | Guanyu Wu, Zhiyu He, Qiuheng Wang, Haibo Wang, Zeyu Wang, Peipei Sun, Zhao Mo, Huanzhi Liu, Hui Xu. Non-metal inducing charge rearrangement in carbon nitride to promote photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2024, 195(0): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||