J. Mater. Sci. Technol. ›› 2024, Vol. 192: 228-239.DOI: 10.1016/j.jmst.2023.12.047
• Research Article • Previous Articles Next Articles
Tong Lin, Chun Li*, Dejun Gao, Zeshu Du, Xiaoqing Si, Junlei Qi, Jian Cao*
Received:
2023-09-16
Revised:
2023-12-17
Accepted:
2023-12-17
Published:
2024-09-01
Online:
2024-02-01
Contact:
* E-mail addresses: chun.li@hit.edu.cn (C. Li), cao_jian@hit.edu.cn (J. Cao).
Tong Lin, Chun Li, Dejun Gao, Zeshu Du, Xiaoqing Si, Junlei Qi, Jian Cao. Enhanced Ti/Nb/Ti diffusion bonding at ultra-low temperatures by surface nanocrystallization treatment[J]. J. Mater. Sci. Technol., 2024, 192: 228-239.
[1] X.L. Pan, X.D. Wang, Z. Tian, W.F. He, X.S. Shi, P.M. Chen, L.C. Zhou, J. Alloy. Compd. 850(2021) 156672. [2] S. Joseph, T.C. Lindley, D. Dye, E.A. Saunders, Corros. Sci. 134(2018) 169-178. [3] D. Banerjee, J.C. William, Acta Mater. 61(2013) 844-879. [4] X.L. Gao, L.J. Zhang, J. Liu, J.X. Zhang, Mater. Sci. Eng. A 559 (2013) 14-21. [5] G.Q. Wang, Z.Y. Chen, J.W. Li, J.R. Liu, Q.J. Wang, R. Yang, J. Mater. Sci.Technol. 34(2018) 570-576. [6] T. Pragatheswaran, S. Rajakumar, V. Balasubramanian, Manuf. Mater. Process. 37(2022) 896-907. [7] Y.C. Du, R.K. Shiue, J. Mater. Process.Technol. 209(2009) 5161-5166. [8] A. Shapiro, A. Rabinkin, Weld. J. 82(2003) 36-43. [9] S.Y. Chang, L.C. Tsao, Y.H. Lei, S.M. Mao, C.H. Huang, J. Mater. Process.Technol. 212(2012) 8-14. [10] T. Takeda, K. Kunitomi, T. Horie, K. Iwata, Nucl. Eng. Des. 168(1997) 11-21. [11] T. Gietzelt, V. Toth, A. Huell, in: Joining Technology, IntechOpen Publishing, London, 2016, pp. 196-216. [12] F.A. Calvo, J.M.G.De Salazar, A.Ureña, J.G. Carrión, F. Perosanz, J. Mater. Sci. 27(1992) 391-398. [13] C.J. He, M.H. Chen, L.S. Xie, Hot Working Technol. 17(2017) 64-68. [14] J. Kundu, A. Chakraborty, S. Kundu, Weld. World 64 (2020) 2129-2143. [15] H. Li, H.B. Liu, W.X. Yu, M.Q. Li, Mater. Lett. 108(2013) 212-214. [16] L.X. Sun, M.Q. Li, J. Mater. Process.Technol. 270(2019) 265-273. [17] A.H.M.E. Rahman, M.N. Cavalli, Mater. Sci. Eng. A 527 (2010) 5189-5193. [18] M. Samavatian, S. Zakipour, M. Paidar, Weld. World 61 (2017) 69-74. [19] Y.Q. Deng, G.M. Sheng, F.L. Wang, X.J. Yuan, Q. An, Mater. Des. 92(2016) 1-7. [20] A. Elrefaey, L. Wojarski, J. Janczak-Rusch, W. Tillmann, Mater. Sci. Eng. A 565 (2013) 180-186. [21] X.G. Song, J. Cao, H.Y. Chen, H.Q. Wang, J.C. Feng, Mater. Des. 46(2013) 895-901. [22] E. Norouzi, M. Atapour, M. Shamanian, J. Alloy. Compd. 701(2017) 335-341. [23] H. Li, C. Zhang, H.B. Liu, M.Q. Li, Trans. Nonferrous Met. Soc. China 25 (2015) 80-87. [24] T. Pragatheswaran, S. Rajakumar, V. Balasubramanian, S. Kavitha, V. Petley, S. Verma, SAE Int. J.Aerosp. 12(2019) 153-174. [25] L.X. Zhang, Z. Sun, J.M. Shi, X.F. Ye, Z.Y. Yang, J.C. Feng, Int. J. Hydrog. Energy 44 (2019) 3906-3916. [26] H. Liu, J. Cao, P. He, J.C. Feng, Int. J. Hydrog. Energy 34 (2009) 1108-1113. [27] A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer International Publishing, Berlin, 2014. [28] I. Kaur, W. Gust, L. Kozma, Handbook of Grain and Interphase Boundary Diffusion Data, Ziegler Press, Stuttgart, 1989. [29] W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, K. Lu, Science 299 (2003) 686-688. [30] T. Balusamy, T.S.N.Sankara Narayanan, K.Ravichandran, I.S. Park, M.H. Lee, Surf. Coat. Technol. 232(2013) 60-67. [31] Z.B. Wang, J. Lu, K. Lu, Acta Mater. 53(2005) 2081-2089. [32] X. Si, B.N. Lu, Z.B. Wang, J. Mater. Sci.Technol. 25(2009) 433-436. [33] C. Li, X.Q. Si, S.W. Bian, Z.B. Dong, Y.X. Huang, J.L. Qi, J.C. Feng, J. Cao, Mater. Sci. Eng. A 785 (2020) 139413. [34] T. Lin, C. Li, X.Q. Si, X.R. Li, B. Yang, J.C. Feng, J. Cao, Materialia 14 (2020) 100882. [35] X.S. Fu, X.C. Wang, Q. Wang, W.L. Zhou, H.Y. Xu, D.G. Liu, Z.Q. Li, G.Q. Chen, J. Mater. Eng.Perform. 27(2018) 5551-5560. [36] H.T. Gao, G.Q. He, Q. Li, Y.G. Li, W. Hu, S.J. Zhou, F.M. Liu, J.L. Yi, Y.P. Zhang, Z.H. Cai, S. Ogata, L.J. Qiao, L. Gao, J. Mater. Res.Technol. 24(2023) 475-487. [37] Y.L. Zhang, H.S. Liu, Z.P. Jin, Calphad-Comput. Coupling Ph. Diagrams Thermochem. 25(2001) 305-317. [38] T. Lin, T. Chang, Q. Xie, C. Li, X.Q. Si, B. Yang, Q. Du, D.Q. Wei, J.L. Qi, J. Cao, Mater. Charact. 191(2022) 112114. [39] O.O. Temitope, J. Lu, Nano Mater. Sci. 2(2020) 3-31. [40] N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, Acta Mater. 50(2002) 4603-4616. [41] Y.G. Liu, M.Q. Li, Mater. Sci. Eng. A 669 (2016) 7-13. [42] G.J. van Gurp, W.F. van der Weg, D. Sigurd, J. Appl. Phys. 49(1978) 4011-4020. [43] J.X. Li, A. Vivek, G. Daehn, J. Mater. Sci.Technol. 79(2021) 191-204. [44] M.A. Dayananda, Metall. Mater. Trans. A 27 (1996) 2504-2509. [45] C. Matano, Jpn. J. Phys. 8(1933) 109-113. [46] F. Sauer, V. Freise, Z. Elektrochem. Ber.Bunsen Ges. Phys. Chem. 66(1962) 353-362. [47] V.A. Baheti, A. Paul, Acta Mater. 156(2018) 420-431. [48] C.J. McHargue, S.E. Adair, I.P. Hammond, Trans. AIME 197 (1953) 1199-1203. [49] M. Hansen, E.L. Kamen, H.D. Kessler, D.J. McPherson, Trans. AIME 191 (1951) 881-888. [50] V.I. Gryzunov, B.K. Aitbaev, G. Omasheva, T.I. Fryzunova, Seriya Khimicheskaya 6 (1993) 29-33. [51] H. Mehrer, Berlin, 2007. [52] F.J.J. van Loo, Prog.Solid State Chem. 20(1990) 47-99. [53] L.S. Darken, Trans. Am. Inst. Min. Metall. Eng. 175(1948) 184-201. [54] Y.J. Liu, T.Y. Pan, L.J. Zhang, D. Yu, Y. Ge, J. Alloy. Compd. 476(2009) 429-435. [55] G. Palumbo, S. Thorpe, K.T. Aust, Scr. Metall. Mater. 24(1990) 1347-1350. [56] S.V. Divinski, B.S. Bokstein, Defect Diffus.Forum 309-310(2011) 1-8. [57] Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, K. Lu, Acta Mater. 51(2003) 4319-4329. [58] D.R. Chichili, K.T. Ramesh, K.J. Hemker, Acta Mater. 46(1998) 1025-1043. [59] S.Y. Lian, A.J. Fourie, J.Y. Wang, H.C. Swart, J.J. Terblans, J. Vac. Sci. Technol. A 41 (2023) 033401. [60] Z.B. Wang, K. Lu, G. Wild, S.V. Divinski, Acta Mater. 58(2010) 2376-2386. [61] Z.D. Xiang, P.K. Datta, Scr. Mater. 55(2006) 1151-1154. [62] I. Sah, D. Kim, H.J. Lee, C. Jang, Mater. Des. 47(2013) 581-589. [63] N. Hansen, Scr. Mater. 51(2004) 801-806. |
[1] | C. Xu, X.H. Shao, H.J. Yang, M. Lv, H.Q. Liu, X.L. Ma. Uncovering the hierarchical clusters in the heat-affected zone of an electron beam welded α/β titanium alloy joint [J]. J. Mater. Sci. Technol., 2024, 174(0): 120-132. |
[2] | Fuqiang Zhang, Xianfei Ding, Leming Xu, Xin Feng, Hai Nan, Jianping He, Yongfeng Liang, Junpin Lin. Microstructure evolution and phase transformation of the mushy zone in a quenched β-solidifying TiAl alloy [J]. J. Mater. Sci. Technol., 2024, 169(0): 28-41. |
[3] | S.X. Wang, S.F. Li, X.M. Gan, R.D.K. Misra, R. Zheng, K. Kondoh, Y.F. Yang. Insights into the microstructural design of high-performance Ti alloys for laser powder bed fusion by tailoring columnar prior-β grains and α-Ti morphology [J]. J. Mater. Sci. Technol., 2024, 187(0): 156-168. |
[4] | Fucheng Qiu, Tuo Cheng, Yuchao Song, Orest M. Ivasishin, Dmytro G. Savvakin, Guangyu Ma, Huiyan Xu. Achieving superior performance in powder-metallurgy near-β titanium alloy by combining hot rolling and rapid heat treatment followed by aging [J]. J. Mater. Sci. Technol., 2024, 171(0): 24-36. |
[5] | Changlu Zhou, Ruihao Yuan, Baolong Su, Jiangkun Fan, Bin Tang, Pingxiang Zhang, Jinshan Li. Creep rupture life prediction of high-temperature titanium alloy using cross-material transfer learning [J]. J. Mater. Sci. Technol., 2024, 178(0): 39-47. |
[6] | Kejia Pan, Xiaotao Liu, Bao Wang, Shuai Gao, Shixing Wu, Ning Li. The rapid densification behavior of powder metallurgy Ti alloys by induction heating sintering [J]. J. Mater. Sci. Technol., 2024, 181(0): 152-164. |
[7] | Fulin Liu, Yao Chen, Lang Li, Chong Wang, Qingyuan Wang, Yongjie Liu. Influence of welded pores on fatigue behavior of TC17 titanium alloy welded joints subjected to gigacycle regime at room and high temperatures [J]. J. Mater. Sci. Technol., 2024, 178(0): 1-21. |
[8] | Wei Fan, Yijie Peng, Yongxia Wang, Yang Qi, Zhe Feng, Hua Tan, Fengying Zhang, Xin Lin. Effect of grain boundary Widmanstätten α colony on the anisotropic tensile properties of directed energy deposited Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2024, 184(0): 145-156. |
[9] | Runze Wang, Hongyun Luo, Sujun Wu, Tianshu Zhao, Xin Wang, Robert O. Ritchie. Anisotropic growth of nano-precipitates governed by preferred orientation and residual stress in an Al-Zn-Mg-Cu alloy [J]. J. Mater. Sci. Technol., 2024, 188(0): 234-251. |
[10] | Jie Shen, Zhihao Zhang, Jianxin Xie. Simultaneously enhancing the hot workability and room-temperature strength of Ti-6Al-4V alloy via adding Mo and Fe [J]. J. Mater. Sci. Technol., 2024, 180(0): 32-44. |
[11] | Yu Zhen, Minghui Chen, Chengtao Yu, Zongbang Yang, Yang Qi, Fuhui Wang. High temperature self-lubricating Ti-Mo-Ag composites with exceptional high mechanical strength and wear resistance [J]. J. Mater. Sci. Technol., 2024, 180(0): 80-90. |
[12] | Yuqi He, Fengying Zhang, Yuhong Dai, Kexin Zhao, Zimeng Ye, Zerong Yu, Chao Xia, Hua Tan. Enhanced low cycle fatigue properties of selective laser melting Ti-6Al-4V with fine-tuned composition and optimized microstructure [J]. J. Mater. Sci. Technol., 2024, 180(0): 129-140. |
[13] | Yu Fu, Wenlong Xiao, Jian Rong, Lei Ren, Huabei Peng, Yuhua Wen, Xinqing Zhao, Chaoli Ma. Achieving large near-linear elasticity, low modulus, and high strength in a metastable β-Ti alloy by mild cold rolling [J]. J. Mater. Sci. Technol., 2024, 189(0): 1-12. |
[14] | Ziyuan Zhao, Daoxiu Li, Xirui Yan, Yan Chen, Zhe Jia, Dongqing Zhang, Mengxia Han, Xu Wang, Guiliang Liu, Xiangfa Liu, Sida Liu. Insights into the dual effects of Ti on the grain refinement and mechanical properties of hypoeutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2024, 189(0): 44-59. |
[15] | Hongwei Zhang, Hongzhi Cui, Xiaojie Song, Kun Pang, Cheng Man, Feiya Liu, Xiaoying Wang, Zhongyu Cui. Excellent tribocorrosion resistance of additively manufactured Ti-based heterogeneous composite coating via hardening and toughening effects [J]. J. Mater. Sci. Technol., 2024, 190(0): 76-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||