J. Mater. Sci. Technol. ›› 2024, Vol. 191: 157-167.DOI: 10.1016/j.jmst.2023.12.039
• Research Article • Previous Articles Next Articles
Lucas Spessatoa,*, LucasH.S. Crespoa, Marcela C. Silvaa, MarianaS. Gibinb, Francielle Satob, Manuel E.G. Winklerc, Vitor C. Almeidaa,*
Received:
2023-08-01
Revised:
2023-11-23
Accepted:
2023-12-13
Online:
2024-08-20
Contact:
*E-mail addresses: lssouza2@uem.br (L. Spessato), vcalmeida@uem.br (V.C. Almeida).
Lucas Spessato, LucasH.S. Crespo, Marcela C. Silva, MarianaS. Gibin, Francielle Sato, Manuel E.G. Winkler, Vitor C. Almeida. Tuning photodegradation performance using carbon quantum dots and niobium pentoxide[J]. J. Mater. Sci. Technol., 2024, 191: 157-167.
[1] J. Wang, F. Gao, Z. Liu, M. Qiao, X. Niu, K.Q. Zhang, X. Huang, PLoS ONE 7 (2012) e51808. [2] D.J. Alderman, J. Fish Dis. 8(1985) 289-298. [3] W.C. Andersen, J.E. Roybal, S.B.Turnipseed, in: FDA/ORA/DFS Laboratory Information Bulletin, 2022, pp. 1-13. http://wayback.archive-it.org/7993/20180424205356/https://www.fda.gov/downloads/Food/FoodScienceResearch/ucm071564.pdf. [4] J. Wu, J. Yang, P. Feng, L. Wen, G. Huang, C. Xu, B. Lin, J. Ind. Eng.Chem. 113(2022) 206-214. [5] T. Arunprasath, S. Sudalai, R. Meenatchi, K. Jeyavishnu, A. Arumugam, Biocatal. Agric. Biotechnol. 17(2019) 672-679. [6] A. Ansari, D. Nematollahi, Water Res. 144(2018) 462-473. [7] Y. Hu, Y. Li, J. He, T. Liu, K. Zhang, X. Huang, L. Kong, J. Liu, J. Environ. Manage. 226(2018) 256-263. [8] L. Kaylor, P. Skelly, M. Alsarrani, M. Subir, Chemosphere 287 (2022) 131953. [9] N.T.H.Giang, N.D. Hai, N.T. Thinh, N.N. Tan, L.P. Phuong, D.B. Thinh, N. Van Duc, V.N.D. Viet, H.K. Duy, M.T. Phong, N.H. Hieu, Diam. Relat. Mater. 129(2022) 109321. [10] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 114(2014) 9919-9986. [11] P. Zhang, C. Peng, H. Li, J. Huang, Y. Wang, Y. Yu, S. Ding, S. Liu, Y. Zhao, Sep. Purif. Technol. 286(2022) 120406. [12] C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39(2010) 4206-4219. [13] D. Ayodhya, G. Veerabhadram, Mater. Today Energy 9 (2018) 83-113. [14] O.F. Lopes, E.C. Paris, C. Ribeiro, Appl. Catal. B-Environ. 144(2014) 800-808. [15] E. Abreu, M.Z. Fidelis, M.E. Fuziki, R.M. Malikoski, M.C. Mastsubara, R.E. Imada, J. L.Diaz de Tuesta, H.T. Gomes, M.D. Anziliero, B. Baldykowski, D.T. Dias, G.G. Lenzi, J. Photochem. Photobiol. A-Chem. 419(2021) 113484. [16] S. Nishimoto, T. Takiguchi, Y. Kameshima, M. Miyake, Chem. Phys. Lett. 726(2019) 34-38. [17] Y.-H. Pai, S.-Y. Fang, J. Power Sources 230 (2012) 321-326. [18] V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, J. Photochem. Photobiol.C-Photochem. Rev. 25(2015) 1-29. [19] A. Ahlawat, T.K. Dhiman, P.R. Solanki, P.S. Rana, Environ. Sci. Pollut. Res. 1(2023) 3. [20] K. Akbar, E. Moretti, A. Vomiero, Adv. Opt. Mater. 9(2021) 2100532. [21] M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, S. Tao, J. Liu, B. Yang, Nano Today 19 (2018) 201-218. [22] Y. Yao, H. Zhang, K. Hu, G. Nie, Y. Yang, Y. Wang, X. Duan, S. Wang, J. Environ. Chem.Eng. 10(2022) 107336. [23] R.M.S. Sendão, J.C.G. Esteves da Silva, L. Pinto da Silva, Catalysts 13 (2023) 179. [24] Z. Zhang, G. Yi, P. Li, X. Zhang, H. Fan, Y. Zhang, X. Wang, C. Zhang, Nanoscale 12 (2020) 13899-13906. [25] J. Liu, R. Li, B. Yang, ACS Cent. Sci. 6(2020) 2179-2195. [26] Z. Qu, J. Wang, J. Tang, X. Shu, X. Liu, Z. Zhang, J. Wang, Mol. Catal. 445(2018) 1-11. [27] S. Dou, D. Wang, Q. Shang, X. Kong, Y. Fang, Diam. Relat. Mater. 137(2023) 110115. [28] H. Widiyandari, O. Prilita, M.S.Al Ja'farawy, F.Nurosyid, O. Arutanti, Y. Astuti, N. Mufti, Results Eng. 17(2023) 100814. [29] Y. Wang, L. Chen, X. Zhao, H. Song, F. He, S. Cheng, B. Zheng, C. Zhao, J. Zhang, X. Duan, Y. Liu, H. Lee, H. Sun, S. Wang, S. Wang, Carbon 204 (2023) 284-294. [30] T.T.Vu Nu, N.H. Thi Tran, P.L. Truong, B.T. Phan, M.T. Nguyen Dinh, V.P. Dinh, T.S. Phan, S. Go, M. Chang, K.T. Loan Trinh, V. Van Tran, Environ. Res. 206(2022) 112631. [31] W. Lu, Y. Luo, Y. Zhang, A.M. Asiri, S. Liu, X. Qin, G. Chang, A.O.Al-Youbi, Anal. Chem. 84(2012) 5351-5357. [32] Y. Feng, D. Zhong, H. Miao, X. Yang, Talanta 140 (2015) 128-133. [33] H. Peng, J. Travas-Sejdic, Chem. Mater. 21(2009) 5563-5565. [34] J. Zhang, Y. Yuan, G. Liang, S.-H. Yu, Adv. Sci. 2 (2015) 15000 02. [35] T. Mezadri, D. Villaño, M.S.Fernández-Pachón, M.C. García-Parrilla, A.M. Tron-coso, J. Food Compos. Anal. 21(2008) 282-290. [36] A. Prakash, R. Baskaran, J. Food Sci.Technol. 55(2018) 3373-3384. [37] E.R. Leite, C. Vila, J. Bettini, E. Longo, J. Phys. Chem. B 110 (2006) 18088-18090. [38] A.M. Brouwer, Pure Appl. Chem. 83(2011) 2213-2228. [39] A.W. Adamson, A.P.Gast, in: Physical Chemistry of Surfaces, 6th edition, 1994, pp. 721-723. [40] N.G. Asenjo, C. Blanco, P. Álvarez, R. Santamaría, M. Granda, R. Menéndez, Car-bon 55 (2013) 62-69. [41] H. Wise, B.J. Wood, Adv. At. Mol. Opt. Phys. 3(1968) 291-353. [42] F. Parrino, G. Camera Roda, V. Loddo, L. Palmisano, J. Catal. 366(2018) 167-175. [43] S.M. Tsui, W. Chu, Chemosphere 44 (2001) 17-22. [44] D.J.Shaw, in: Introduction to Colloid and Surface Chemistry, 4th edition, 1975, p. 210. [45] J.N.Israelachvili, in: Intermolecular and Surface Forces, 3rd edition, 2011, pp. 326-361. [46] M. Liu, Nanoarchitectonics 1 (2020) 1-12. [47] J.R.Lakowicz, in: Principles of Fluorescence Spectroscopy, 3rd edition, 2006, pp. 1-24. [48] B. De, N. Karak, RSC Adv. 3(2013) 8286-8290. [49] X. Pang, R. Yan, L. Li, P. Wang, Y. Zhang, Y. Liu, P. Liu, W. Dong, P. Miao, Q. Mei, Analyt. Chim. Acta1199 (2022) 339571. [50] X. Zhang, M. Jiang, N. Niu, Z. Chen, S. Li, S. Liu, J. Li, ChemSusChem 11 (2018) 11-24. [51] F.P. Ludwig, J. Schmelzer, J. Colloid Interface Sci. 181(1996) 503-510. [52] D.A. Barlow, J.K. Baird, C.H. Su, J. Cryst. Growth 264 (2004) 417-423. [53] F.-P. Ludwig, J.Schmelzer, J. Colloid Interface Sci. 181(1996) 503-510. [54] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rou-querol, K.S.W. Sing, Pure Appl. Chem. 87(2015) 1051-1069. [55] L. Spessato, A.L. Cazetta, S. Melo, O. Pezoti, J. Tami, A. Ronix, J.M. Fonseca, A.F. Martins, T.L. Silva, V.C. Almeida, J. Mol. Liq. 300(2020) 112282. [56] K. Kaneko, J. Memb. Sci. 96(1994) 59-89. [57] L. Spessato, K.C. Bedin, A.L. Cazetta, I.P.A.F. Souza, V.A. Duarte, L.H.S.Crespo, M. C. Silva, R.M. Pontes, V.C. Almeida, J. Hazard. Mater. 371(2019) 499-505. [58] M. Braic, V. Braic, M. Balaceanu, A. Vladescu, C.N. Zoita, I. Titorencu, V. Jinga, F. Miculescu, Thin Solid Films 519 (2011) 4064-4068. [59] A.M. Dugandžić, A.V. Tomašević, M.M. Radišić, N. Šekuljica, D. Mijin, S. D. Petrovi´c, J. Photochem. Photobiol. A-Chem. 336(2017) 146-155. [60] X. Shao, K. Wang, L. Peng, K. Li, H. Wen, X. Le, X. Wu, G. Wang, Colloids Surf. A-Physicochem. Eng.Asp. 652(2022) 129846. [61] C.L. Ücker, F. Riemke, V. Goetzke, M.L. Moreira, C.W. Raubach, E. Longo, S. Cava, Chem. Phys. Impact. 4 (2022) 100079. [62] J. Wu, J. Li, J. Liu, J. Bai, L. Yang, RSC Adv. 7(2017) 51046-51054. [63] F. Hashemzadeh, R. Rahimi, A. Ghaffarinejad, Ceram. Int. 40(2014) 9817-9829. [64] D. Wang, Z. Zhang, D. Zhang, Z. Zheng, G. Chen, N. Zhang, X. Liu, R. Ma, J. Power Sources. 530(2022) 231274. [65] Y. Yu, Y. Jin, N. Hasan, S. Cao, X. Wang, H. Ming, P. Shen, R. Zheng, H. Sun, M. Ahmad, Electrochim. Acta 435 (2022) 141397. [66] F. Jin, X. Ma, S.Q. Guo, Mater. Lett. 347(2023) 134664. [67] X. Yang, D. Wang, ACS Appl. Energy Mater. 1(2018) 6657-6693. [68] L. Gomathi Devi, S. Girish Kumar, K. Mohan Reddy, C. Munikrishnappa, J. Haz-ard. Mater. 164(2009) 459-467. [69] A.G.S.Prado, L.B. Bolzon, C.P. Pedroso, A.O. Moura, L.L. Costa, Appl. Catal. B-En-viron. 82(2008) 219-224. [70] S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal. 8(2018) 143-150. [71] J.S. Fruton, J. Biol. Chem. 105(1934) 79-85. [72] D.A. Armstrong, R.E. Huie, W.H. Koppenol, S.V. Lymar, G. Merenyi, P. Neta, B. Ruscic, D.M. Stanbury, S. Steenken, P. Wardman, Pure Appl. Chem. 87(2015) 1139-1150. [73] A.E. Wagner, P. Huebbe, T. Konishi, M.M. Rahman, M. Nakahara, S. Matsugo, G. Rimbach, J. Agric.Food Chem. 56(2008) 11694-11699. [74] N. Omrani, A. Nezamzadeh-Ejhieh, J. Mol. Liq. 315(2020) 113701. |
[1] | T.Y. Huang, Z. Yang, S.Y. Yang, Z.H. Dai, Y.J. Liu, J.H. Liao, G.Y. Zhong, Z.J. Xie, Y.P. Fang, S.S. Zhang. Construction of 2D/2D Ti3C2Tx MXene/CdS heterojunction with photothermal effect for efficient photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2024, 171(0): 1-9. |
[2] | Qi Wang, Hao Zhou, Jianying Qian, Biao Xue, Hao Du, Derek Hao, Yun Ji, Qiang Li. Ti3C2-assisted construction of Z-scheme MIL-88A(Fe)/Ti3C2/RF heterojunction: Multifunctional photocatalysis-in-situ-self-Fenton catalyst [J]. J. Mater. Sci. Technol., 2024, 190(0): 67-75. |
[3] | Yansong Wang, Shujuan Jiang, Chuanzhi Sun, Shaoqing Song. Synchronously regulating d-and p-band centers of heterojunction photocatalysts by strain effect for solar energy conversion into H2 [J]. J. Mater. Sci. Technol., 2024, 190(0): 210-217. |
[4] | Yunxiang Zhang, Yu Wang, Chenliang Zhou, Hazem Abdelsalam, Wei Chen, Li Huang, Zhichao Mu, Zhili Chen, Diab Khalafallah, Qinfang Zhang. In situ silver clusters decorated Bi24O31Cl10 nanorods for boosting photo-thermal catalytic activities [J]. J. Mater. Sci. Technol., 2024, 190(0): 236-247. |
[5] | Changliang Nie, Xiaohan Wang, Ping Lu, Yukun Zhu, Xin Li, Hua Tang. Advancements in S-scheme heterojunction materials for photocatalytic environmental remediation [J]. J. Mater. Sci. Technol., 2024, 169(0): 182-198. |
[6] | Fangyi Li, Guihua Zhu, Jizhou Jiang, Lang Yang, Fengxia Deng, Arramel, Xin Li. A review of updated S-scheme heterojunction photocatalysts [J]. J. Mater. Sci. Technol., 2024, 177(0): 142-180. |
[7] | Zhihan Yu, Fang Li, Quanjun Xiang. Carbon dots-based nanocomposites for heterogeneous photocatalysis [J]. J. Mater. Sci. Technol., 2024, 175(0): 244-257. |
[8] | Lina Wang, Peiyi Yan, Huairui Chen, Zhuo Li, Shu Jin, Xiaoxiang Xu, Jun Qian. Augmenting reactive species over MgIn2S4-In2O3 hybrid nanofibers for efficient photocatalytic antibacterial activity [J]. J. Mater. Sci. Technol., 2024, 176(0): 83-90. |
[9] | Juhua Luo, Xing Liu, Jieliang Gu, Wenjie Zhao, Minming Gu, Yu Xie. Construction of novel g-C3N4/β-FeOOH Z-Scheme heterostructure photocatalyst modified with carbon quantum dots for efficient degradation of RhB [J]. J. Mater. Sci. Technol., 2024, 181(0): 11-19. |
[10] | Dong-Eun Lee, Naresh Mameda, Kasala Prabhakar Reddy, B. Moses Abraham, Wan-Kuen Jo, Surendar Tonda. Bifunctional S-scheme hybrid heterojunction comprising CdS nanorods and BiOIO3 nanosheets for efficient solar-induced antibiotic degradation and highly-selective CO2 reduction [J]. J. Mater. Sci. Technol., 2023, 161(0): 74-87. |
[11] | Xingxing Yang, Lina Sheng, Yongli Ye, Jiadi Sun, Zaijun Li, Xiao Ning, Jin Cao, Xiulan Sun. Recent advances in metal-free CDs/g-C3N4 photocatalysts: Synthetic strategies, mechanism insight, and applications [J]. J. Mater. Sci. Technol., 2023, 150(0): 11-26. |
[12] | Yangli Ke, Qingliang You, Jing Ai, Xiaofang Yang, Qigao Shang, Yanyang Liu, Dongsheng Wang, Guiying Liao. Improved performance of visible-light photocatalytic H2-production and Cr(VI) reduction by waste pigeon guano doped g-C3N4nanosheets [J]. J. Mater. Sci. Technol., 2023, 152(0): 37-49. |
[13] | Raqiqa Tur Rasool, Ghulam Abbas Ashraf, Mohsin Pasha, Muhammad Farooq Saleem, Djamel Ghernaout, Mohammed M. Fadhali, Hai Guo. Nanoscaled MnSnO2@CsPbBr3 quantum dots heterostructure photocatalyst as efficient organic pollutants degradation by peroxymonosulfate; DFT calculation [J]. J. Mater. Sci. Technol., 2023, 153(0): 41-55. |
[14] | Guoan Lin, Chi Zhang, Xiaoxiang Xu. Ta3N5-LaTaON2 heterojunction with matched interfaces to accelerate charge separation for efficient photocatalytic water oxidation [J]. J. Mater. Sci. Technol., 2023, 154(0): 241-250. |
[15] | Xunfu Zhou, Pai Wang, Meng Li, Minfu Wu, Bei Jin, Jin Luo, Meifeng Chen, Xiaoqin Zhou, Yanning Zhang, Xiaosong Zhou. Synergistic effect of phosphorus doping and MoS2 co-catalysts on g-C3N4 photocatalysts for enhanced solar water splitting [J]. J. Mater. Sci. Technol., 2023, 158(0): 171-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||