J. Mater. Sci. Technol. ›› 2024, Vol. 189: 146-154.DOI: 10.1016/j.jmst.2024.01.002
• Research Article • Previous Articles Next Articles
Feng Wang1, Shunxin Zhang1, Wenhao Jing1, Haoran Qiu, Ya Liu*, Liejin Guo*
Received:
2023-09-10
Revised:
2023-12-27
Accepted:
2024-01-03
Published:
2024-08-01
Online:
2024-01-12
Contact:
*E-mail addresses: . About author:
1 These authors contributed equally to this work.
Feng Wang, Shunxin Zhang, Wenhao Jing, Haoran Qiu, Ya Liu, Liejin Guo. Double Z-scheme in SnO2/SnS2/Cu2SnS3 heterojunction for photocatalytic reduction of CO2 to ethanol[J]. J. Mater. Sci. Technol., 2024, 189: 146-154.
[1] J. Albero, Y. Peng, H. García, ACS Catal. 10(2020) 5734-5749. [2] H. Li, C. Cheng, Z. Yang, J. Wei, Nat. Commun. 13(2022) 6466. [3] Y. Chen, Y. Liu, F. Wang, X. Guan, L. Guo, J. Energy Chem. 61(2021) 469-488. [4] Y. Liu, L. Guo, J. Chem. Phys. 152(2020) 100901. [5] J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Small 13 (2017) 1603938. [6] J. Guo, C.H. Shen, J. Sun, X.J. Xu, X.Y. Li, Z.H. Fei, Z.T. Liu, X.J. Wen, Sep. Purif. Technol. 259(2021) 118109. [7] K. Das, R. Das, M. Riyaz, A. Parui, D. Bagchi, A.K. Singh, A.K. Singh, C.P. Vinod, S.C. Peter, Adv Mater. 35(2023) 2205994. [8] S. Bai, W. Jing, G. He, C. Liao, F. Wang, Y. Liu, L. Guo, ACS Nano 17 (2023) 10976-10986. [9] J. Sun, C.H. Shen, J. Guo, H. Guo, Y.F. Yin, X.J. Xu, Z.H. Fei, Z.T. Liu, X.J. Wen, J. Colloid Interface Sci. 588(2021) 19-30. [10] F. Wang, F. Huang, F. Yu, X. Kang, Q. Wang, Y. Liu, Cell Rep. Phys. Sci. 4(2023) 101450. [11] Q. Zhu, Q. Xu, M. Du, X. Zeng, G. Zhong, B. Qiu, J. Zhang, Adv. Mater. 34(2022) 2202929. [12] J. Hua, Z. Wang, J. Zhang, K. Dai, C. Shao, K. Fan, J. Mater. Sci.Technol. 156(2023) 64-71. [13] I. Shown, S. Samireddi, Y.C. Chang, R. Putikam, P.H. Chang, A. Sabbah, F.Y. Fu, W.F. Chen, C.I. Wu, T.Y. Yu, P.W. Chung, M.C. Lin, L.C. Chen, K.H. Chen, Nat. Commun. 9(2018) 169. [14] L. Wang, B. Zhao, C. Wang, M. Sun, Y. Yu, B. Zhang, J. Mater. Chem. A 8 (2020) 10175-10179. [15] F. You, J. Wan, J. Qi, D. Mao, N. Yang, Q. Zhang, L. Gu, D. Wang, Angew. Chem. Int. Ed. 59(2020) 721-724. [16] H. She, H. Zhou, L. Li, Z. Zhao, M. Jiang, J. Huang, L. Wang, Q. Wang, ACS Sustain. Chem. Eng. 7(2018) 650-659. [17] B. Su, H. Huang, Z. Ding, M.B.J.Roeffaers, S. Wang, J.Long, J. Mater. Sci. Technol. 124(2022) 164-170. [18] C.H. Shen, Y. Chen, X.J. Xu, X.Y. Li, X.J. Wen, Z.T. Liu, R. Xing, H. Guo, Z.H. Fei, J. Hazard. Mater. 416(2021) 126217. [19] T. Billo, I. Shown, A.k. Anbalagan, T.A. Effendi, A. Sabbah, F.Y. Fu, C.M. Chu, W.Y. Woon, R.S. Chen, C.H. Lee, K.H. Chen, L.C. Chen, Nano Energy 72 (2020) 104717. [20] X. Jiao, X. Li, X. Jin, Y. Sun, J. Xu, L. Liang, H. Ju, J. Zhu, Y. Pan, W. Yan, Y. Lin, Y. Xie, J. Am. Chem.Soc. 139(2017) 18044-18051. [21] J. Wang, T. Bo, B. Shao, Y. Zhang, L. Jia, X. Tan, W. Zhou, T. Yu, Appl. Catal. B 297 (2021) 120498. [22] T. Yoshida, A. Yamaguchi, N. Umezawa, M. Miyauchi, J. Phys. Chem. C 122 (2018) 21695-21702. [23] Z. Zhao, X. Li, K. Dai, J. Zhang, G. Dawson, J. Mater. Sci.Technol. 117(2022) 109-119. [24] S. Yin, L. Sun, Y. Zhou, X. Li, J. Li, X. Song, P. Huo, H. Wang, Y. Yan, Chem. Eng. J. 406(2021) 126776. [25] F. Deng, J. Peng, X. Li, X. Luo, P. Ganguly, S.C. Pillai, B. Ren, L. Ding, D.D. Dionysiou, J. Clean. Prod. 416(2023) 137957. [26] Z. Wang, S. Hu, F. Deng, H. Shi, X. Li, S. Zhang, J. Zou, X. Luo, Sep. Purif. Technol. 330(2024) 125287. [27] B. Xia, F. Deng, S. Zhang, L. Hua, X. Luo, M. Ao, J. Hazard. Mater. 392(2020) 122345. [28] C.Y. Wu, C.J. Lee, Y.H. Yu, H.W. Tsao, Y.H. Su, C.C. Kaun, J.S. Chen, J.J. Wu, ACS Appl. Mater. Interfaces 13 (2021) 4984-4992. [29] Z. Lin, J. Liu, S. Li, J. Liang, X. Liu, L. Xie, G. Lu, J. Han, Y. Huang, Q. Li, Adv. Funct. Mater. 33(2023) 2211638. [30] Y. Rui, T. Li, B. Li, Y. Wang, P. Müller-Buschbaum, J. Mater. Chem. C 10 (2022) 12392-12401. [31] L. Meng, L. Li, Nano Res. Energy 1 (2022) 9120020. [32] Y. Zhang, L. Guo, Y. Wang, T. Wang, T. Ma, Z. Zhang, D. Wang, B. Xu, F. Fu, J. Mater. Sci.Technol. 110(2022) 152-160. [33] X.J. Wen, L. Qian, X.X. Lv, J. Sun, J. Guo, Z.H. Fei, C.G. Niu, J. Hazard. Mater. 385(2020) 121508. [34] Y. He, H. Rao, K. Song, J. Li, Y. Yu, Y. Lou, C. Li, Y. Han, Z. Shi, S. Feng, Adv. Funct. Mater. 29(2019) 1905153. [35] L. Wang, B. Cheng, L. Zhang, J. Yu, Small 17 (2021) 2103447. [36] S. Zhao, K. Li, J. Wu, J. Zhang, X. Li, X. Guo, C. Song, ACS Appl. Mater. Interfaces 14 (2021) 20375-20384. [37] Z. Zhang, Y. Cao, F. Zhang, W. Li, Y. Li, H. Yu, M. Wang, H. Yu, Chem. Eng. J. 428(2022) 131218. [38] N. Sharma, T. Das, S. Kumar, R. Bhosale, M. Kabir, S. Ogale, A.C.S.Appl, Energy Mater. 2(2019) 5677-5685. [39] A. Raza, H. Shen, A.A. Haidry, Appl. Catal. B 277 (2020) 119239. [40] A. Raza, H. Shen, A.A. Haidry, L. Sun, R. Liu, S. Cui, J. CO2 Util. 37(2020) 260-271. [41] J. Chantana, K. Tai, H. Hayashi, T. Nishimura, Y. Kawano, T. Minemoto, Sol. Energy Mater Sol. Cells 206 (2020) 110261. [42] A. Kanai, M. Sugiyama, Sol. Energy Mater Sol. Cells 231 (2021) 111315. [43] J. Xu, R. Wang, X. Chen, R. Zhou, J. Zhang, Mater. Today Energy 17 (2020) 100435. [44] J. Xu, W. Sun, Z. Hu, Y. You, Y. Lu, R. Zhou, J. Zhang, Mater. Today Energy 10 (2018) 200-207. [45] M.B. Zaman, R. Poolla, Opt. Mater. 104(2020) 109853. [46] A .R. Machale, S.A . Phaltane, H.D. Shelke, L.D. Kadam, Mater, Today: Proc 43 (2021) 2768-2773. [47] D.M. Berg, R. Djemour, L. Gütay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo- Roca, A. Pérez-Rodriguez, Appl. Phys. Lett. 100(2012) 192103. [48] N.R. Mathews, J. Tamy Benítez, F. Paraguay-Delgado, M. Pal, L. Huerta, J. Mater. Sci.: Mater. Electron. 24(2013) 4060-4067. [49] X. Chia, P. Lazar, Z. Sofer, J. Luxa, M. Pumera, J. Phys. Chem. C 120 (2016) 24098-24111. [50] Q. Chen, F. Lu, Y. Xia, H. Wang, X. Kuang, J. Mater. Chem. A 5 (2017) 4075-4083. [51] Y. Hu, B. Luo, D. Ye, X. Zhu, M. Lyu, L. Wang, Adv. Mater. 29(2017) 1606132. [52] K. Xu, N. Li, D. Zeng, S. Tian, S. Zhang, D. Hu, C. Xie, ACS Appl. Mater. Interfaces 7 (2015) 11359-11368. [53] C. Liang, B. Kim, S. Yang, L. Yang, C.Francisco Woellner, Z. Li, R. Vajtai, W. Yang, J. Wu, P.J.A. Kenis, P.M. Ajayan, J. Mater. Chem. A 6 (2018) 10313-10319. [54] H. Yu, C. Sun, Y. Xuan, K. Zhang, K. Chang, Chem. Eng. J. 430(2022) 132940. [55] W. Dai, H. Xu, J. Yu, X. Hu, X. Luo, X. Tu, L. Yang, Appl. Surf. Sci. 356(2015) 173-180. [56] D. Zhao, Y. Xuan, K. Zhang, X. Liu, ChemSusChem 14 (2021) 3293-3302. [57] S. Zhang, W. Xiong, J. Long, Y. Si, Y. Xu, L. Yang, J. Zou, W. Dai, X. Luo, S. Luo, J. Colloid Interface Sci. 615(2022) 716-724. [58] R. Das, K. Das, B. Ray, C.P. Vinod, S.C. Peter, Energy Environ. Sci. 15(2022) 1967-1976. [59] Y. Xu, J. Yu, J. Long, L. Tu, W. Dai, L. Yang, Nanomater. 12(2022) 2030. [60] S. Gao, H. Guan, H. Wang, X. Yang, W. Yang, Q. Li, J. Adv. Ceram. 11(2022) 1404-1416. [61] J. Peng, F. Deng, H. Shi, Z. Wang, X. Li, J. Zou, X. Luo, Appl. Catal. B 340 (2024) 123179. [62] F. You, X. Hou, P. Wei, J. Qi, Inorg. Chem. 60(2021) 18598-18602. [63] Y. Guo, X. Yin, Y. Yang, W. Que, RSC Adv. 6(2016) 104041-104048. [64] X.D. Wang, Y.H. Huang, J.F. Liao, Y. Jiang, L. Zhou, X.Y. Zhang, H.Y. Chen, D.B. Kuang, J. Am. Chem.Soc. 141(2019) 13434-13441. [65] M. Dömök, M. Tóth, J. Raskó, A. Erdo˝helyi, Appl. Catal. B 69 (2007) 262-272. [66] U. Kasimayan, A. Nadarajan, C.M. Singaravelu, G.T. Pan, J. Kandasamy, T.C.K.Yang, J.H Lin, Sci.Rep. 10(2020) 2128. [67] C. Trevisanut, F. Bosselet, F. Cavani, J.M.M.Millet, Catal. Sci. Technol. 5(2015) 1280-1289. [68] T. Di, B. Zhu, B. Cheng, J. Yu, J. Xu, J. Catal. 352(2017) 532-541. [69] W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Nat. Catal. 3(2020) 478-487. [70] K. Chen, T. Jiang, T. Liu, J. Yu, S. Zhou, A. Ali, S. Wang, Y. Liu, L. Zhu, X. Xu, Adv. Funct. Mater. 32(2022) 2109336. [71] W. Shangguan, Q. Liu, Y. Wang, N. Sun, Y. Liu, R. Zhao, Y. Li, C. Wang, J. Zhao, Nat. Commun. 13(2022) 3894. [72] Y. Ouyang, L. Shi, X. Bai, Q. Li, J. Wang, Chem. Sci. 11(2020) 1807-1813. [73] T.K. Todorova, M.W. Schreiber, M. Fontecave, ACS Catal. 10(2020) 1754-1768 . |
[1] | Yuhan Liu, Jing Shang, Tong Zhu. Enhanced thermal-assisted photocatalytic CO2 reduction by RGO/H-CN two-dimensional heterojunction [J]. J. Mater. Sci. Technol., 2024, 176(0): 36-47. |
[2] | Rongan He, Yunyun Zheng, Jinru Feng, Qiuqi Mo, Kexin Gong, Difa Xu. In situ synthesis of flexible Bi7O9I3/carbon paper with enhanced photocatalytic activity [J]. J. Mater. Sci. Technol., 2024, 178(0): 112-119. |
[3] | Yanfeng Zhang, Zhenyi Zhang. Reversing free-electron transfer of sulfide cocatalyst for exceptional photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2024, 171(0): 147-149. |
[4] | Yajing Ren, Yunfeng Li, Guixu Pan, Ning Wang, Yan Xing, Zhenyi Zhang. Recent progress in CdS-based S-scheme photocatalysts [J]. J. Mater. Sci. Technol., 2024, 171(0): 162-184. |
[5] | Wenhan Chen, Meng Dai, Li Xiang, Shan Zhao, Shuguang Wang, Zuoli He. Assembling S-scheme heterojunction between basic bismuth nitrate and bismuth tungstate with promoting charges' separation for accelerated photocatalytic sulfamethazine degradation [J]. J. Mater. Sci. Technol., 2024, 171(0): 185-197. |
[6] | Dehong Yang, Yang Li, Ruihua Chen, Xiangjian Wang, Zhi Li, Tao Xing, Lei Wei, Sheng Xu, Pengcheng Dai, Mingbo Wu. Flower-like superstructure of boron carbon nitride nanosheets with adjustable band gaps for photocatalytic hydrogen peroxide production [J]. J. Mater. Sci. Technol., 2024, 183(0): 23-31. |
[7] | Hongjun Dong, Lei Tong, Pingfan Zhang, Daqiang Zhu, Jizhou Jiang, Chunmei Li. Built-in electric field intensified by photothermoelectric effect drives charge separation over Z-scheme 3D/2D In2Se3/PCN heterojunction for high-efficiency photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2024, 179(0): 251-261. |
[8] | Jing Yang, Juan Wang, Guohong Wang, Kai Wang, Jinmao Li, Li Zhao. In situ irradiated XPS investigation on S-scheme TiO2/Bi2S3 photocatalyst with high interfacial charge separation for highly efficient photothermal catalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2024, 189(0): 86-95. |
[9] | Ruyao Chen, Haiyue Zhang, Yuming Dong, Haifeng Shi. Dual metal ions/BNQDs boost PMS activation over copper tungstate photocatalyst for antibiotic removal: Intermediate, toxicity assessment and mechanism [J]. J. Mater. Sci. Technol., 2024, 170(0): 11-24. |
[10] | Fei Xie, Chuanbiao Bie, Jian Sun, Zhenyi Zhang, Bicheng Zhu. A DFT study on Pt single atom loaded COF for efficient photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2024, 170(0): 87-94. |
[11] | Ruting Huang, Yeyin Zhang, Wenqiang Li, Wanxia Zhang, Yong Fang, Wenrui Zhang, Anqi Cui, Yu Ying, Xianyang Shi. Modified NiFe-MOF with defects induced by -NH2 and -SH for enhanced adsorption and photocatalytic reduction of CO2 [J]. J. Mater. Sci. Technol., 2024, 170(0): 167-176. |
[12] | Yanyan Zhao, Xu Fan, Hongxing Zheng, Enzhou Liu, Jun Fan, Xuejun Wang. Bi2WO6/AgInS2 S-scheme heterojunction: Efficient photodegradation of organic pollutant and toxicity evaluation [J]. J. Mater. Sci. Technol., 2024, 170(0): 200-211. |
[13] | Liquan Jing, Yuanguo Xu, Meng Xie, Chongchong Wu, Heng Zhao, Jiu Wang, Hui Wang, Yubo Yan, Na Zhong, Huaming Li, Ian D. Gates, Jinguang Hu. LnVO4 (Ln=La, Ce, Pr, Nd, etc.)-based photocatalysts: Synthesis, design, and applications [J]. J. Mater. Sci. Technol., 2024, 177(0): 10-43. |
[14] | Xin Yang, Tianyu Wang, Huiyang Ma, Weiliang Shi, Zhengqiang Xia, Qi Yang, Pan Zhang, Ren Ma, Gang Xie, Sanping Chen. Matched micro-geometrical configuration leading to hetero-interfacial intimate contact of MoS2@UiO-66-NH2 Z-scheme heterojunction for efficient photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2024, 182(0): 210-219. |
[15] | Jingjing Zhang, Yue Zhao, Kezhen Qi, Shu-yuan Liu. CuInS2 quantum-dot-modified g-C3N4 S-scheme heterojunction photocatalyst for hydrogen production and tetracycline degradation [J]. J. Mater. Sci. Technol., 2024, 172(0): 145-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||