J. Mater. Sci. Technol. ›› 2024, Vol. 188: 73-83.DOI: 10.1016/j.jmst.2023.12.009
• Research Article • Previous Articles Next Articles
Ning Zhanga,b, Aina Heb,c,*, Gan Zhangb, Peng Caib, Bojun Zhangb, Yufan Lingb, Yaqiang Dongb,c,*, Jiawei Lib,c,*, Qikui Manb,c, Baogen Shenb,c
Received:2023-09-12
Revised:2023-11-17
Accepted:2023-12-08
Published:2024-07-20
Online:2024-01-12
Contact:
*CAS Key Laboratory of Magnetic Materials and De-vices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Tech-nology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China. E-mail addresses: hean@nimte.ac.cn (A. He), dongyq@nimte.ac.cn (Y. Dong), lijw@nimte.ac.cn (J. Li).
Ning Zhang, Aina He, Gan Zhang, Peng Cai, Bojun Zhang, Yufan Ling, Yaqiang Dong, Jiawei Li, Qikui Man, Baogen Shen. Interpretable machine learning-assisted design of Fe-based nanocrystalline alloys with high saturation magnetic induction and low coercivity[J]. J. Mater. Sci. Technol., 2024, 188: 73-83.
| [1] O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23 (2011) 821-842. [2] J.M. Silveyra, E. Ferrara, D.L. Huber, T.C. Monson, Science 362 (2018) 1-9. [3] M.E.McHenry, M.A. Willard, D.E. Laughlin, Prog. Mater. Sci. 44 (1999) 291-433. [4] G. Herzer, Acta Mater. 61 (2013) 718-734. [5] Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64 (1988) 6044-6046. [6] G. Herzer, in: H. Krönmuller, S. Parkin (Eds.), Handbook of Magnetism and Advanced Magnetic Materials, John Wiley & Sons, Hoboken, New Jersey, 2007. [7] F.C. Li, T. Liu, J.Y. Zhang, S. Shuang, Q. Wang, A.D. Wang, J.G. Wang, Y. Yang, Mater. Today Adv. 4 (2019) 100027. [8] M.A. Willard, M. Daniil, in: H. Krönmuller, S. Parkin (Eds.), Handbook of Mag-netism and Advanced Magnetic Materials, John Wiley & Sons, Hoboken, New Jersey, 2007. [9] T.H.Akihiro Makino, Yutaka Naitoh, Teruo Bitoh, A.Inoue, T. Masumoto, IEEE Trans. Magn. 33 (1997) 3793-3798. [10] K. Suzuki, N. Kataoka, A. Inoue, A. Makino, T. Masumoto, Mater. Trans. 31 (1990) 743-746. [11] K. Suzuki, N. Kataoka, A. Inoue, T. Masumoto, A. Makino, Mater. Trans. JIM 32 (1991) 93-102. [12] M.A. Willard, D.E. Laughlin, M.E.McHenry, D.Thoma, K. Sickafus, J.O. Cross, V.G. Harris, J. Appl. Phys. 84 (1998) 6773-6777. [13] Y. Yoshizawa, S. Fujii, D.H. Ping, M. Ohnuma, K. Hono, Scr. Mater. 48 (2003) 863-868. [14] Y. Yoshizawa, S. Fujii, D.H. Ping, M. Ohnuma, K. Hono, Mater. Sci. Eng.A 375-377 (2004) 207-212. [15] A. Makino, H. Men, K. Yubuta, T. Kubota, J. Appl. Phys. 105 (2009) 013922. [16] F. Kong, A. Wang, X. Fan, H. Men, B. Shen, G. Xie, A. Makino, A. Inoue, J. Appl. Phys. 109 (2011) 07A303. [17] L. Hou, C. Jiang, H. Liu, Q. Luo, X. Fan, W. Li, M. Li, J. Alloys Compd. 859 (2021) 157863. [18] X. Fan, T. Zhang, W. Yang, J. Luan, Z. Jiao, H. Li, J. Mater. Sci.Technol. 147 (2023) 124-131. [19] J. Xu, Y. Yang, Q. Yan, G. Xiao, T. Luo, C. Fan, Scr. Mater. 179 (2020) 6-11. [20] X.S. Li, J. Zhou, L.Q. Shen, B.A. Sun, H.Y. Bai, W.H. Wang, Adv. Mater. 35 (2022) 2205863. [21] K. Suzuki, R. Parsons, B. Zang, K. Onodera, H. Kishimoto, A. Kato, Appl. Phys. Lett. 110 (2017) 012407. [22] H. Li, A. Wang, T. Liu, P. Chen, A. He, Q. Li, J. Luan, C.-T. Liu, Mater. Today 42 (2021) 49-56. [23] Y.Q. Wu, T. Bitoh, K. Hono, A. Makino, A. Inoue, Acta Mater. 49 (2001) 4069-4077. [24] Akihiro Makino, Teruo Bitoh, Akihisa Inoue, T. Masumoto, Scr.Mater. 48 (2003) 869-874. [25] E. Lopatina, I. Soldatov, V. Budinsky, M. Marsilius, L. Schultz, G. Herzer, R. Schäfer, Acta Mater. 96 (2015) 10-17. [26] J. Zhou, X. Li, X. Hou, H. Ke, X. Fan, J. Luan, H. Peng, Q. Zeng, H. Lou, J. Wang, C.T. Liu, B. Shen, B. Sun, W. Wang, H. Bai, Adv. Mater. 35 (2023) 2304490. [27] A. Inoue, F. Kong, Encycl. Smart Mater. 5 (2022) 10-23. [28] G. Zhang, H. Zhang, S. Yue, R. Cheng, A. Wang, A. He, Y. Dong, H. Ni, C.-T. Liu, Intermetallics 107 (2019) 47-52. [29] M.J. Shi, Z.Q. Liu, T. Zhang, J. Mate. Sci.Technol. 31 (2015) 493-497. [30] A.D. Wang, C.L. Zhao, A.N. He, H. Men, C.T. Chang, X.M. Wang, J. Alloys Compd. 656 (2016) 729-734. [31] A. Inoue, Acta Mater. 48 (2000) 279-306. [32] A.D. Wang, C.L. Zhao, A.N. He, S.Q. Yue, C.T. Chang, B.L. Shen, X.M. Wang, R.W. Li, Intermetallics 71 (2016) 1-6. [33] J. Xiong, S.Q. Shi, T.Y. Zhang, Mater. Des. 187 (2020) 108378. [34] Y. Zhang, C. Wen, C.X. Wang, S. Antonov, D.Z. Xue, Y. Bai, Y.J. Su, Acta Mater. 185 (2020) 528-539. [35] J.X. Zhang, X.L. Liu, S.R. Bi, J.Q. Yin, G.N. Zhang, M. Eisenbach, Mater. Des. 185 (2020) 108247. [36] S.Y. He, Y.M. Wang, Z.Y. Zhang, F. Xiao, S.G. Zuo, Y. Zhou, X.R. Cai, X.J. Jin, Mater. Des. 225 (2023) 111513. [37] H. Wen, J. Jin, X. Tang, X. Wang, H. Yang, Y. Zhang, M. Zhang, L. Deng, Q. Wei, J. Chen, X. Ma, J. Guo, Int. J. Mech. Sci. 260 (2023) 108654. [38] A. Agrawal, A. Choudhary, APL Mater. 4 (2016) 053208. [39] G.L.W.Hart, T. Mueller, C.Toher, S. Curtarolo, Nat. Rev. Mater. 6 (2021) 730-755. [40] Z. Zhou, Y. Zhou, Q. He, Z. Ding, F. Li, Y. Yang, NPJ Comput. Mater. 5 (2019) 128. [41] S.M. Zeng, Y.C. Zhao, G. Li, R.R. Wang, X.M. Wang, J. Ni, NPJ Comput. Mater. 5 (2019) 7. [42] C.S. Wang, H.D. Fu, L. Jiang, D.Z. Xue, J.X. Xie, NPJ Comput. Mater. 5 (2019) 8. [43] Z. Lu, X. Chen, X. Liu, D. Lin, Y. Wu, Y. Zhang, H. Wang, S. Jiang, H. Li, X. Wang, Z. Lu, NPJ Comput. Mater. 6 (2020) 187. [44] Y. Wang, Y. Tian, T. Kirk, O. Laris, J.H. Ross, R.D. Noebe, V. Keylin, R. Arróyave, Acta Mater. 194 (2020) 144-155. [45] Y. Tang, Y. Wan, Z. Wang, C. Zhang, J. Han, C. Hu, C. Tang, Mater. Des. 219 (2022) 110726. [46] A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829. [47] T. Liu, H. Zhang, F. Kong, A. Wang, Y. Dong, A. He, X. Wang, H. Ni, Y. Yang, J. Mater. Res.Technol. 9 (2020) 3558-3565. [48] C.L. Zhao, A.D. Wang, A.N. He, S.Q. Yue, C.T. Chang, X.M. Wang, R.W. Li, J. Alloys Compd. 659 (2016) 193-197. [49] J.S. Zhu, Y.G. Wang, J. Alloys Compd. 652 (2015) 220-224. [50] R. Xiang, S.X. Zhou, B.S. Zong, G.Q. Zhang, Z.Z. Li, Y.G. Wang, C.T. Chang, Prog. Nat. Sci. 24 (2014) 649-654. [51] R. Xiang, S.X. Zhou, B.S. Dong, Y.G. Wang, J. Mater. Sci.: Mater. Electron. 26 (2015) 4091-4096. [52] F.L. Kong, H. Men, T.C. Liu, B.L. Shen, J. Appl. Phys. 111 (2012) 3. [53] J.L. Ding, H.J. Xu, Z.G. Shi, X. Li, T. Zhang, J. Non-Cryst. Solids 571 (2021) 6. [54] J. Zhang, F. Wan, Y. Li, J. Zheng, A. Wang, J. Song, M. Tian, A. He, C. Chang, J. Magn. Magn.Mater. 438 (2017) 126-131. [55] R. Xiang, S.X. Zhou, B.S. Dong, G.Q. Zhang, Z.Z. Li, Y.G. Wang, J. Mater. Sci.Mater. Electron. 25 (2014) 2979-2984. [56] F.L. Kong, C.T. Chang, A. Inoue, E. Shalaan, F. Al-Marzouki, J. Alloys Compd. 615 (2014) 163-166. [57] Y.L. Jin, X.D. Fan, H. Men, X.C. Liu, B.L. Shen, Sci. China-Technol. Sci. 55 (2012) 3419-3424. [58] L. Liu, B. Zhou, Y. Zhang, A. He, T. Zhang, F. Li, Y. Dong, X. Wang, Metals (Basel) 9 (2019) 219. [59] L. Xie, T. Liu, A. He, Q. Li, Z. Gao, A. Wang, C. Chang, X. Wang, C.T. Liu, J. Mater. Sci. 53 (2017) 1437-1446. [60] F. Kong, A. Wang, X. Fan, H. Men, B. Shen, G. Xie, A. Makino, A. Inoue, J. Appl. Phys. 109 (2011) 219. [61] T. Liu, F. Li, A. Wang, L. Xie, Q. He, J. Luan, A. He, X. Wang, C.T. Liu, Y. Yang, J. Alloys Compd. 776 (2019) 606-613. [62] X. Zhang, Y. Dong, A. He, L. Xie, F. Li, L. Chang, H. Xiao, H. Li, T. Wang, J. Magn. Magn.Mater. 506 (2020) 166757. [63] H. Li, A. He, A. Wang, L. Xie, Q. Li, C. Zhao, G. Zhang, P. Chen, J. Magn. Magn.Mater. 471 (2019) 110-115. [64] Z.X. Dou, Y.L. Li, K. Lv, T. Wang, F.S. Li, X.D. Hui, Mater. Sci. Eng. C 264 (2021) 114942. [65] H. Xiao, A. Wang, C. Zhao, A. He, G. Zhang, H. Li, R.-W. Li, X.Liu, J. Mater. Sci. Mater. Electron. 29 (2018) 19517-19523. [66] N. Chau, N.H. Luong, N.X. Chien, P.Q. Thanh, L.V. Vu, Physica B 327 (2003) 241-243. [67] Y. Yoshizawa, M. Ohta, in: Proceedings to the 13th International Conference on Rapidly Quenched and Metastable Materials, Dresden, Germany, 2008 Au-gust 24-29. [68] H. Xiao, Y. Dong, A. He, H. Sun, A. Wang, H. Li, L. Liu, X. Liu, R.-W. Li, J.Magn. Magn. Mater. 478 (2019) 192-197. [69] L. Hou, X.D. Fan, Q.Q. Wang, W.M. Yang, B.L. Shen, J. Mater. Sci.Technol. 35 (2019) 1655-1661. [70] R. Parsons, Z. Li, K. Suzuki, J. Magn. Magn.Mater. 485 (2019) 180-186. [71] A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, J. Appl. Phys. 105 (2009) 3. [72] Y.L. Li, Z.X. Dou, X.M. Chen, K. Lv, F.S. Li, X.D. Hui, Mater. Sci. Eng. C 262 (2020) 114740. [73] Z. Xiang, A.D. Wang, C.L. Zhao, H. Men, X.M. Wang, C.T. Chang, D. Pan, J. Alloys Compd. 622 (2015) 1000-1004. [74] B. Zhang, F. Yang, A. He, H. Xiao, Y. Dong, J. Li, Y. Han, Metals (Basel) 11 (2020) 20. [75] T. Tomita, T. Takahashi, H. Kuwata, AIP Adv. 9 (2019) 3. [76] L. Xie, A. Wang, S. Yue, A. He, C. Chang, Q. Li, X. Wang, C.-T. Liu, J.Magn. Magn. Mater. 483 (2019) 158-163. [77] C. Zhao, A. Wang, S. Yue, T. Liu, A. He, C. Chang, X. Wang, C.-T. Liu, J.Alloys Compd. 742 (2018) 220-225. [78] L. Xue, H.S. Liu, L.T. Dou, W.M. Yang, C.T. Chang, A. Inoue, X.M. Wang, R.W. Li, B.L. Shen, Mater. Des. 56 (2014) 227-231. [79] X.D. Fan, H. Men, A.B. Ma, B.L. Shen, J. Magn. Magn.Mater. 326 (2013) 22-27. [80] A. Inoue, B.L. Shen, T. Ohsuna, Mater. Trans. 43 (2002) 2337-2341. [81] H. Xiao, A. Wang, J. Li, A. He, T. Liu, Y. Dong, H. Guo, X. Liu, J. Alloys Compd. 821 (2020) 153487. [82] Z. Li, A. Wang, C. Chang, Y. Wang, B. Dong, S. Zhou, J. Alloys Compd. 611 (2014) 197-201. [83] X.D. Fan, T. Zhang, M.F. Jiang, W.M. Yang, B.L. Shen, J. Non-Cryst. Solids 503 (2019) 36-43. [84] H. Ebert, S. Mankovsky, S. Wimmer, Handbook of Magnetism and Magnetic Materials, Springer International Publishing, Cham, Switzerland, 2021. [85] J. Mohapatra, X.B. Liu, P. Joshi, J.P. Liu, J. Alloys Compd. 955 (2023) 170258. [86] Handbuch der Physik, Nature 133 (1934) 516. [87] R. Yuan, Z. Liu, P.V. Balachandran, D. Xue, Y. Zhou, X. Ding, J. Sun, D. Xue, T. Lookman, Adv. Mater. 30 (2018) 1702884. [88] L. Breiman, Random forests, Mach.Learn. 45 (2001) 5-32. [89] Z. He, L. Li, Z. Huang, H. Situ, Quantum Inf. Process. 17 (2018) 1-11. [90] H.W. Wang, L.Y. Shangguan, J.J. Wu, R. Guan, Neurocomputing 122 (2013) 490-500. [91] S. Ray, in: Proceedings to 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 2019. [92] N.S. Altman, Am. Stat. 46 (1992) 175-185. [93] W.J. Wang, Z.B. Xu, W.Z. Lu, X.Y. Zhang, Neurocomputing 55 (2003) 643-663. [94] Z.C. Lu, X. Chen, X.J. Liu, D.Y. Lin, Y. Wu, Y.B. Zhang, H. Wang, S.H. Jiang, H.X. Li, X.Z. Wang, Z.P. Lu, NPJ Comput. Mater. 6 (2020) 187. [95] C. Yang, C. Ren, Y.F. Jia, G. Wang, M.J. Li, W.C. Lu, Acta Mater. 222 (2022) 117431. [96] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, IEEE Trans. Evol. Comput. 6 (2002) 182-197. [97] X. Li, X.L. Li, K. Wang, S.X. Yang, Inf. Sci. 626 (2023) 658-693. [98] K. Yamauchi, T. Mizoguchi, J. Phys. Soc.Jpn. 39 (1975) 541-542. [99] S.M. Lundberg, S.I. Lee, Adv. Neurol. 30 (2017) 4768-4777. [100] H.Y. Jung, M. Stoica, S. Yi, D.H. Kim, J. Eckert, Intermetallics 69 (2016) 54-61. [101] J.W. Zheng, Q. Ding, A.A. He, Y.Q. Dong, L. Xie, X.B. Li, X.C. Liu, J.W. Li, J. Alloys Compd. 934 (2023) 167886. [102] C. Sun, H.J. Xu, Y. Meng, C.K. Liu, B.Y. Qiao, L.J. Lu, T. Zhang, J. Non-Cryst. Solids 599 (2023) 121990. [103] Jazzbin, geatpy: the genetic and evolutionary algorithm toolbox with high performance in python. http://www.geatpy.com/, 2020. [104] Y.-X. Zhang, S.-J. Xie, W. Guo, J. Ding, L.H. Poh, Z.-D. Sha, J. Alloys Compd. 960 (2023) 170793. [105] B. Pang, Z. Long, T. Long, R. He, X. Liu, M. Pan, Mater. Des. 231 (2023) 112054. |
| [1] | Changlu Zhou, Ruihao Yuan, Baolong Su, Jiangkun Fan, Bin Tang, Pingxiang Zhang, Jinshan Li. Creep rupture life prediction of high-temperature titanium alloy using cross-material transfer learning [J]. J. Mater. Sci. Technol., 2024, 178(0): 39-47. |
| [2] | Ji-Chang Ren, Junjun Zhou, Christopher J. Butch, Zhigang Ding, Shuang Li, Yonghao Zhao, Wei Liu. Predicting single-phase solid solutions in as-sputtered high entropy alloys: High-throughput screening with machine-learning model [J]. J. Mater. Sci. Technol., 2023, 138(0): 70-79. |
| [3] | Yimian Chen, Shuize Wang, Jie Xiong, Guilin Wu, Junheng Gao, Yuan Wu, Guoqiang Ma, Hong-Hui Wu, Xinping Mao. Identifying facile material descriptors for Charpy impact toughness in low-alloy steel via machine learning [J]. J. Mater. Sci. Technol., 2023, 132(0): 213-222. |
| [4] | J. Christudasjustus, M.R. Felde, C.S. Witharamage, J. Esquivel, A.A. Darwish, C. Winkler, R.K. Gupta. Age-hardening behavior, corrosion mechanisms, and passive film structure of nanocrystalline Al-V supersaturated solid solution [J]. J. Mater. Sci. Technol., 2023, 135(0): 1-12. |
| [5] | Feiyang Wang, Hong-Hui Wu, Linshuo Dong, Guangfei Pan, Xiaoye Zhou, Shuize Wang, Ruiqiang Guo, Guilin Wu, Junheng Gao, Fu-Zhi Dai, Xinping Mao. Atomic-scale simulations in multi-component alloys and compounds: A review on advances in interatomic potential [J]. J. Mater. Sci. Technol., 2023, 165(0): 49-65. |
| [6] | Zhichao Lu, Yibo Zhang, Wenyue Li, Jinyue Wang, Xiongjun Liu, Yuan Wu, Hui Wang, Dong Ma, Zhaoping Lu. Materials genome strategy for metallic glasses [J]. J. Mater. Sci. Technol., 2023, 166(0): 173-199. |
| [7] | Xingdu Fan, Tao Zhang, Weiming Yang, Junhua Luan, Zengbao Jiao, Hui Li. Design of FeSiBPCu soft magnetic alloys with good amorphous forming ability and ultra-wide crystallization window [J]. J. Mater. Sci. Technol., 2023, 147(0): 124-131. |
| [8] | Jiayi He, Jinwen Hu, Bang Zhou, Haoyang Jia, Xiaolian Liu, Zhenhua Zhang, Lin Wen, Lizhong Zhao, Hongya Yu, Xichun Zhong, Xuefeng Zhang, Zhongwu Liu. Simultaneous enhancement of coercivity and electric resistivity of Nd-Fe-B magnets by Pr-Tb-Al-Cu synergistic grain boundary diffusion toward high-temperature motor rotors [J]. J. Mater. Sci. Technol., 2023, 154(0): 54-64. |
| [9] | Xiaobing Hu, Yiming Chen, Jianlin Lu, Chen Xing, Jiajun Zhao, Qingfeng Wu, Yuhao Jia, Junjie Li, Zhijun Wang, Jincheng Wang. Three-step learning strategy for designing 15Cr ferritic steels with enhanced strength and plasticity at elevated temperature [J]. J. Mater. Sci. Technol., 2023, 164(0): 79-94. |
| [10] | Bin Xu, Haiqing Yin, Xue Jiang, Cong Zhang, Ruijie Zhang, Yongwei Wang, Xuanhui Qu, Zhenghua Deng, Guoqiang Yang, Dil Faraz Khan. Data-driven design of Ni-based turbine disc superalloys to improve yield strength [J]. J. Mater. Sci. Technol., 2023, 155(0): 175-191. |
| [11] | Xinming Feng, Zhilei Wang, Lei Jiang, Fan Zhao, Zhihao Zhang. Simultaneous enhancement in mechanical and corrosion properties of Al-Mg-Si alloys using machine learning [J]. J. Mater. Sci. Technol., 2023, 167(0): 1-13. |
| [12] | Xiaoxiao Geng, Xinping Mao, Hong-Hui Wu, Shuize Wang, Weihua Xue, Guanzhen Zhang, Asad Ullah, Hao Wang. A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels [J]. J. Mater. Sci. Technol., 2022, 107(0): 207-215. |
| [13] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
| [14] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Grain boundary segregation induced strong UHTCs at elevated temperatures: A universal mechanism from conventional UHTCs to high entropy UHTCs [J]. J. Mater. Sci. Technol., 2022, 123(0): 26-33. |
| [15] | Defang Tu, Jianqi Yan, Yunbo Xie, Jun Li, Shuo Feng, Mingxu Xia, Jianguo Li, Alex Po Leung. Accelerated design for magnetocaloric performance in Mn-Fe-P-Si compounds using machine learning [J]. J. Mater. Sci. Technol., 2022, 96(0): 241-247. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
