J. Mater. Sci. Technol. ›› 2024, Vol. 178: 39-47.DOI: 10.1016/j.jmst.2023.08.046
• Research Article • Previous Articles Next Articles
Changlu Zhoua, Ruihao Yuana,b,*, Baolong Sua, Jiangkun Fana, Bin Tanga, Pingxiang Zhanga, Jinshan Lia,b,*
Received:
2023-06-26
Revised:
2023-08-12
Accepted:
2023-08-27
Published:
2024-04-10
Online:
2023-10-08
Contact:
* State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China. E-mail addresses: rhyuan@nwpu.edu.cn (R. Yuan), ljsh@nwpu.edu.cn (J. Li).
Changlu Zhou, Ruihao Yuan, Baolong Su, Jiangkun Fan, Bin Tang, Pingxiang Zhang, Jinshan Li. Creep rupture life prediction of high-temperature titanium alloy using cross-material transfer learning[J]. J. Mater. Sci. Technol., 2024, 178: 39-47.
[1] H. Liu, H. Wang, L. Ren, D. Qiu, K. Yang, J. Mater. Sci.Technol. 132(2023) 100-109. [2] P.F. Gao, M.W. Fu, M. Zhan, Z.N. Lei, Y.X. Li, J. Mater. Sci.Technol. 39(2020) 56-73. [3] R.R. Boyer, Mater. Sci. Eng. A 213 (1996) 103-114. [4] P. Singh, H. Pungotra, N.S. Kalsi, Mater. Today-Proc. 4(2017) 8971-8982. [5] M.J.R. Barboza, C.M. Neto, C.R.M. Silva, Mater. Sci. Eng. A 369 (2004) 201-209. [6] P. Pototzky, H.J. Maier, H.J. Christ, Metall. Mater. Trans. A 29 (1998) 2995-3004. [7] Z.X. Zhang, J.K. Fan, B. Tang, H.C. Kou, J. Wang, X. Wang, S.Y. Wang, Q.J. Wang, Z.Y. Chen, J.S. Li, J. Mater. Sci.Technol. 49(2020) 56-69. [8] C.X. Cui, B.M. Hu, L.C. Zhao, S.J. Liu, Mater. Des. 32(2011) 1684-1691. [9] J. Bolton, Mater. High Temp. 31(2014) 109-120. [10] J. Bolton, Int. J. Pressure Vessels Pip. 157(2017) 1-19. [11] D.W. MacLachlan, D.M. Knowles, Mater. Sci. Eng. A 302 (2001) 275-285. [12] S.C. Prasad, K.R. Rajagopal, I.J. Rao, Acta Mater. 54(2006) 1487-1500. [13] R. Oruganti, M. Karadge, S. Swaminathan, Acta Mater. 59(2011) 2145-2155. [14] K. Zhang, J.P. Tan, W. Sun, K. Nikbin, S.T. Tu, J. Mater. Sci.Technol. 137(2022) 14-25. [15] Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci.Technol. 44(2020) 171-190. [16] Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16(2016) 2404-2415. [17] Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, J. Magnes. Alloy. 9(2021) 1922-1941. [18] Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, F.S. Pan, Int. J. Miner. Metall. Mater. 29(2022) 32-48. [19] Y.P. Pang, Q. Li, Scr. Mater. 130(2017) 223-228. [20] Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, Q. Li, J. Magnes. Alloy. 7(2019) 58-71. [21] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, npj Computat.Mater. 3(2017) 54. [22] K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 559 (2018) 547-555. [23] P.C. Jennings, S. Lysgaard, J.S. Hummelshøj, T. Vegge, T. Bligaard, npj Comput.Mater. 5(2019) 46. [24] H.X. Liu, H.L. Yan, N. Jia, S. Tang, D.Y. Cong, B. Yang, Z.B. Li, Y.D. Zhang, C. Esling, X. Zhao, J. Mater. Sci.Technol. 131(2022) 1-13. [25] J.J. He, R. Sandström, J. Zhang, H.Y. Qin, J. Mater. Res.Technol. 22(2023) 923-937. [26] D. Shin, Y. Yamamoto, M.P. Brady, S. Lee, J.A. Haynes, Acta Mater. 168(2019) 321-330. [27] Y.M. Tan, X.W. Wang, Z.T. Kang, F. Ye, Y.F. Chen, D.W. Zhou, X.C. Zhang, J.M. Gong, J. Mater. Res.Technol. 21(2022) 4745-4760. [28] O. Mamun, M. Wenzlick, A. Sathanur, J. Hawk, R. Devanathan, npj Mater.Degrad. 5(2021) 20. [29] K. Nakamura, T. Ohnuma, Mater. Today Commun. 36(2023) 106687. [30] C.C. Wang, X.L. Wei, D. Ren, X. Wang, W. Xu, Mater. Des. 213(2022) 110326. [31] Y. Liu, J.M. Wu, Z.C. Wang, X.G. Lu, M. Avdeev, S.Q. Shi, C.Y. Wang, T. Yu, Acta Mater. 195(2020) 454-467. [32] D. Jha, K. Choudhary, F. Tavazza, W.K. Liao, A. Choudhary, C. Campbell, A. Agrawal, Nat. Commun. 10(2019) 5316. [33] H. Yamada, C. Liu, S. Wu, Y. Koyama, S.H. Ju, J. Shiomi, J. Morikawa, R. Yoshida, ACS Central Sci. 5(2019) 1717-1730. [34] V. Gupta, K. Choudhary, F. Tavazza, C. Campbell, W.K. Liao, A. Choudhary, A. Agrawal, Nat. Commun. 12(2021) 6595. [35] Z.Y. Liu, M. Jiang, T.F. Luo, Sci. Adv. 6 (2020) eabd1356. [36] R.W. Evans, R.J. Hull, B. Wilshire, J. Mater, Process. Technol. 56(1996) 492-501. [37] Z.Z. Zheng, S.L. Xiao, X.S. Wang, Y.F. Guo, J.H. Yang, L.J. Xu, Y.Y. Chen, Mater. Sci. Eng. A 803 (2021) 140487. [38] H. Mishra, P. Ghosal, T.K. Nandy, P.K. Sagar, Mater. Sci. Eng. A 399 (2005) 222-231. [39] Z.Z. Zheng, F.T. Kong, Y.Y. Chen, X.P. Wang, Mater. Charact. 178(2021) 111249. [40] W.Y. Li, Z.Y. Chen, J.R. Liu, Q.J. Wang, G.X. Sui, Mater. Sci. Eng. A 688 (2017) 322-329. [41] L.A.N.S. Briguente, A.A. Couto, N.M. Guimarães, D.A.P. Reis, C. de Moura Neto, M.J.R. Barboza, in: Proceedings of the 7th International Conference on Diffusion in Solids and Liquids, Algarve, 2011 June 26-30. [42] G. Singh, D.V.V. Satyanarayana, R. Pederson, R. Datta, U. Ramamurty, Mater. Sci. Eng. A 597 (2014) 194-203. [43] V.M.C.A. Oliveira, A.M. Vazquez, C. Aguiar, A. Robin, M.J.R. Barboza, Mater. Sci. Eng. A 670 (2016) 357-368. [44] Z.X. Zhang, J.K. Fan, R.F. Li, H.C. Kou, Z.Y. Chen, Q.J. Wang, H.L. Zhang, J. Wang, Q. Gao, J.S. Li, J. Mater. Sci.Technol. 75(2021) 265-275. [45] C.M. Omprakash, D.V.V.Satyanarayana, V. Kumar, Mater. Sci. Technol. 27(2011) 1427-1432. [46] D.H. Wolpert, W.G. Macready, IEEE Trans. Evol. Comput. 1(1997) 67-82. [47] F.R. Larson, J. Miller, Trans. Am. Soc. Mech. Eng. 74(1952) 765-771. [48] I. Balasundar, T. Raghu, B.P. Kashyap, Mater. Sci. Eng. A 609 (2014) 241-249. [49] M. Es-Souni, Mater. Charact. 46(2001) 365-379. [50] T.B. Wang, B.I. Li, Z.Q. Wang, Z.R. Nie, Mater. Sci. Eng. A 731 (2018) 12-20. |
[1] | Xiaobing Hu, Yiming Chen, Jianlin Lu, Chen Xing, Jiajun Zhao, Qingfeng Wu, Yuhao Jia, Junjie Li, Zhijun Wang, Jincheng Wang. Three-step learning strategy for designing 15Cr ferritic steels with enhanced strength and plasticity at elevated temperature [J]. J. Mater. Sci. Technol., 2023, 164(0): 79-94. |
[2] | Xinming Feng, Zhilei Wang, Lei Jiang, Fan Zhao, Zhihao Zhang. Simultaneous enhancement in mechanical and corrosion properties of Al-Mg-Si alloys using machine learning [J]. J. Mater. Sci. Technol., 2023, 167(0): 1-13. |
[3] | Bin Xu, Haiqing Yin, Xue Jiang, Cong Zhang, Ruijie Zhang, Yongwei Wang, Xuanhui Qu, Zhenghua Deng, Guoqiang Yang, Dil Faraz Khan. Data-driven design of Ni-based turbine disc superalloys to improve yield strength [J]. J. Mater. Sci. Technol., 2023, 155(0): 175-191. |
[4] | Ji-Chang Ren, Junjun Zhou, Christopher J. Butch, Zhigang Ding, Shuang Li, Yonghao Zhao, Wei Liu. Predicting single-phase solid solutions in as-sputtered high entropy alloys: High-throughput screening with machine-learning model [J]. J. Mater. Sci. Technol., 2023, 138(0): 70-79. |
[5] | Feiyang Wang, Hong-Hui Wu, Linshuo Dong, Guangfei Pan, Xiaoye Zhou, Shuize Wang, Ruiqiang Guo, Guilin Wu, Junheng Gao, Fu-Zhi Dai, Xinping Mao. Atomic-scale simulations in multi-component alloys and compounds: A review on advances in interatomic potential [J]. J. Mater. Sci. Technol., 2023, 165(0): 49-65. |
[6] | Zhichao Lu, Yibo Zhang, Wenyue Li, Jinyue Wang, Xiongjun Liu, Yuan Wu, Hui Wang, Dong Ma, Zhaoping Lu. Materials genome strategy for metallic glasses [J]. J. Mater. Sci. Technol., 2023, 166(0): 173-199. |
[7] | Yimian Chen, Shuize Wang, Jie Xiong, Guilin Wu, Junheng Gao, Yuan Wu, Guoqiang Ma, Hong-Hui Wu, Xinping Mao. Identifying facile material descriptors for Charpy impact toughness in low-alloy steel via machine learning [J]. J. Mater. Sci. Technol., 2023, 132(0): 213-222. |
[8] | Defang Tu, Jianqi Yan, Yunbo Xie, Jun Li, Shuo Feng, Mingxu Xia, Jianguo Li, Alex Po Leung. Accelerated design for magnetocaloric performance in Mn-Fe-P-Si compounds using machine learning [J]. J. Mater. Sci. Technol., 2022, 96(0): 241-247. |
[9] | Lei Jiang, Changsheng Wang, Huadong Fu, Jie Shen, Zhihao Zhang, Jianxin Xie. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98(0): 33-43. |
[10] | Jia Li, Baobin Xie, Quanfeng He, Bin Liu, Xin Zeng, Peter K. Liaw, Qihong Fang, Yong Yang, Yong Liu. Chemical-element-distribution-mediated deformation partitioning and its control mechanical behavior in high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 120(0): 99-107. |
[11] | Yupeng Diao, Luchun Yan, Kewei Gao. A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels [J]. J. Mater. Sci. Technol., 2022, 109(0): 86-93. |
[12] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
[13] | Xiaoxiao Geng, Xinping Mao, Hong-Hui Wu, Shuize Wang, Weihua Xue, Guanzhen Zhang, Asad Ullah, Hao Wang. A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels [J]. J. Mater. Sci. Technol., 2022, 107(0): 207-215. |
[14] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
[15] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Grain boundary segregation induced strong UHTCs at elevated temperatures: A universal mechanism from conventional UHTCs to high entropy UHTCs [J]. J. Mater. Sci. Technol., 2022, 123(0): 26-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||