[1] R.C. Reed, The Superalloys Fundamentals and Applications, Cambridge University Press, 2006. [2] R. Royce, The Jet Engine, John Wiley & Sons, Wiley-Blackwell, 2015. [3] T. Pollock, S. Tin, J. Propuls. Power 22 (2006) 361-374. [4] P. Caron, T. Khan, Aerosp. Sci. Technol. 3 (1999) 513-523. [5] S.-L. Shang, J. Shimanek, S. Qin, Y. Wang, A.M. Beese, Z.-K. Liu, Phys. Rev. B 101 (2020) 024102. [6] Q. Ding, S. Li, L.-Q. Chen, X. Han, Z. Zhang, Q. Yu, J. Li, Acta Mater. 154 (2018) 137-146. [7] S.B. Maisel, N. Schindzielorz, A. Mottura, R.C. Reed, S. Müller, Phys. Rev. B 90 (2014) 094110. [8] A. Mottura, N. Warnken, M. Miller, M. Finnis, R. Reed, Acta Mater. 58 (2010) 931-942. [9] A. Mottura, R. Wu, M. Finnis, R. Reed, Acta Mater. 56 (2008) 2669-2675. [10] X.L. Liu, S.-L. Shang, Y.-J. Hu, Y. Wang, Y. Du,-Z.-K. Liu, Mater. Des. 133 (2017) 39-46. [11] X.-X. Yu, C.-Y. Wang, Acta Mater. 57 (2009) 5914-5920. [12] A. Giamei, D. Anton, Metall. Trans. A 16 (1985) 1997-2005. [13] F. Diologent, P. Caron, Mater. Sci. Eng. A 385 (2004) 245-257. [14] A. Volek, F. Pyczak, R. Singer, H. Mughrabi, Scr. Mater. 52 (2005) 141-145. [15] P. Warren, A. Cerezo, G. Smith, Mater. Sci. Eng. A 250 (1998) 88-92. [16] T. Zhu, C.Y Wang, Y. Gan, Acta Mater. 58 (2010) 2045-2055. [17] S.L. Shang, C.L. Zacherl, H.Z. Fang, Y. Wang, Y. Du, Z.K. Liu, J. Phys. Condens. Matter 24 (2012) 505403. [18] X.-X. Yu, C.-Y. Wang, Mater. Sci. Eng. A 539 (2012) 38-41. [19] F. Xia, W. Xu, Z. Shi, W. Xie, L. Chen, Mech. Mater. 165 (2022) 104183. [20] W. Yang, P. Qu, J. Sun, Q. Yue, H. Su, J. Zhang, L. Liu, Vacuum 181 (2020) 109682. [21] D. Blavette, P. Caron, T. Khan, Scr. Metall. 20 (1986) 1395-1400. [22] D. Blavette, P. Caron, T. Khan, Superalloys (1988) 305-314. [23] N. Wanderka, U. Glatzel, Mater. Sci. Eng. A 203 (1995) 69-74. [24] D. Blavette, E. Cadel, B. Deconihout, Mater. Charact. 44 (20 0 0) 133-157. [25] D. Blavette, E. Cadel, C. Pareige, B. Deconihout, P. Caron, Microsc. Microanal. 13 (2007) 464-483. [26] J. Rüsing, N. Wanderka, U. Czubayko, V. Naundorf, D. Mukherji, J. Rsler, Scr. Mater. 46 (2002) 235-240. [27] A. Mottura, M. Finnis, R. Reed, Acta Mater. 60 (2012) 2866-2872. [28] E. Fleischmann, M.K. Miller, E. Affeldt, U. Glatzel, Acta Mater. 87 (2015) 350-356. [29] Z. Jiachen, T. Huang, F. Lu, K. Cao, D. Wang, J. Zhang, H. Su, L. Liu, Scr. Mater. 204 (2021) 114131. [30] X. Wu, S. Makineni, C. Liebscher, G. Dehm, J. Mianroodi, P. Shanthraj, B. Svend-sen, D. Brger, G. Eggeler, D. Raabe, B. Gault, Nat. Commun. 11 (2020) 389. [31] J. He, F. Scholz, O.M. Horst, P. Thome, J. Frenzel, G. Eggeler, B. Gault, Scr. Mater. 185 (2020) 88-93. [32] V.L. Deringer, N. Bernstein, G. Csányi, C. Ben Mahmoud, M. Ceriotti, M. Wilson, D.A. Drabold, S.R. Elliott, Nature 589 (2021) 59-64. [33] J. Sanchez, F. Ducastelle, D. Gratias, Phys. A (Amsterdam, Neth.) 128 (1984) 334-350. [34] D.D. Fontaine, Solid State Phys. 47 (1994) 33-176. [35] K. Terakura, H. Akai, Interatomic Potential and Structural Stability, Springer Berlin Heidelberg, Berlin, Heidelberg, 1993. [36] L. Cao, C. Li, T. Mueller, J. Chem. Inf. Model. 58 (2018) 2401-2413. [37] A. van de Walle, G. Ceder, J. Phase Equilib. 23 (2002) 348-359. [38] A. van de Walle, M. Asta, G. Ceder, Calphad 26 (2002) 539-553. [39] J.W.D. Connolly, A.R. Williams, Phys. Rev. B 27 (1983) 5169-5172. [40] L.G. Ferreira, A.A. Mbaye, A. Zunger, Phys. Rev. B 35 (1987) 6475-6478. [41] L.G. Ferreira, A.A. Mbaye, A. Zunger, Phys. Rev. B 37 (1988) 10547-10570. [42] L.G. Ferreira, S.-H. Wei, A. Zunger, Phys. Rev. B 40 (1989) 3197-3231. [43] S.V. Barabash, V. Blum, S. Müller, A. Zunger, Phys. Rev. B 74 (2006) 035108. [44] L.J. Nelson, V. Ozoliņš, C.S. Reese, F. Zhou, G.L.W. Hart, Phys. Rev. B 88 (2013) 155105. [45] M. Aldegunde, N. Zabaras, J. Kristensen, J. Comput. Phys. 323 (2016) 17-44. [46] S. Müller, J. Phys.: Condens. Matter 15 (2003) 1429-1500. [47] R. Drautz, H. Reichert, M. Fähnle, H. Dosch, J.M. Sanchez, Phys. Rev. Lett. 87 (2001) 236102. [48] M.H.F. Sluiter, Y. Kawazoe, Phys. Rev. B 68 (2003) 085410. [49] P. Welker, O. Wieckhorst, T.C. Kerscher, S. Mller, J. Phys.: Condens. Matter 22 (2010) 384203. [50] B.C. Han, A. Van der Ven, G. Ceder, B.-J. Hwang, Phys. Rev. B 72 (2005) 205409. [51] D. Lerch, O. Wieckhorst, L. Hammer, K. Heinz, S. Müller, Phys. Rev. B 78 (2008) 121405. [52] M.K.Y. Chan, J. Reed, D. Donadio, T. Mueller, Y.S. Meng, G. Galli, G. Ceder, Phys. Rev. B 81 (2010) 174303. [53] W. Chen, P. Dalach, W.F. Schneider, C. Wolverton, Langmuir 28 (2012) 4683-4693. [54] K. Yuge, J. Phys.: Condens. Matter 22 (2010) 245401. [55] T. Mueller, G. Ceder, ACS Nano 4 (2010) 5647-5656. [56] L.-L. Wang, T. Tan, D. Johnson, Nano Lett. 14 (2014) 7077-7084. [57] T. Mueller, Phys. Rev. B 86 (2012) 144201. [58] X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y.M. Wang, X. Duan, T. Mueller, Y. Huang, Science 348 (2015) 1230-1234. [59] S.B. Maisel, M. Höfler, S. Müller, Phys. Rev. B 94 (2016) 014116. [60] N. Schindzielorz, K. Nowak, S. Maisel, S. Müller, Acta Mater. 75 (2014) 307-315. [61] Z. Leong, U. Ramamurty, T.L. Tan, Acta Mater. 213 (2021) 116958. [62] D. Sobieraj, J. Wróobel, T. Rygier, K. Kurzydł owski, O. El Atwani, A. Devaraj, E. Martinez, D. Nguyen-Manh, Phys. Chem. Chem. Phys. 22 (2020) 23929. [63] G. Hart, V. Blum, M. Walorski, A. Zunger, Nat. Mater. 4 (2005) 391-394. [64] V. Blum, G. Hart, M. Walorski, A. Zunger, Phys. Rev. B 72 (2005) 165113. [65] D. Lerch, O. Wieckhorst, G. Hart, R. Forcade, S. Müller, Modell. Simul. Mater. Sci. Eng. 17 (2009) 055003. [66] G.L.W. Hart, R.W. Forcade, Phys. Rev. B 77 (2008) 224115. [67] G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50. [68] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169. [69] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868. [70] M. Methfessel, A.T. Paxton, Phys. Rev. B 40 (1989) 3616-3621. [71] P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49 (1994) 16223-16233. [72] A. Ceguerra, M. Moody, R. Powles, T. Petersen, R. Marceau, S. Ringer, Acta Crys-tallogr. A 68 (2012) 547-560. [73] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21 (1953) 1087-1092. [74] C. Woodward, A. van de Walle, M. Asta, D. Trinkle, Acta Mater. 75 (2014) 60-70. [75] Z. Mao, C. Booth-Morrison, E. Plotnikov, D. Seidman, J. Mater. Sci. 47 (2012) 7653-7659. [76] O. Levy, M. Jahnátek, R.V. Chepulskii, G.L.W. Hart, S. Curtarolo, J. Am. Chem. Soc. 133 (2011) 158-163. [77] C. Rae, R. Reed, Acta Mater. 49 (2001) 4113-4125. [78] Q. Wu, S.-S. Li, Y. Ma, S.-K. Gong, Chin. Phys. B 21 (2012) 109102. [79] X. Zhang, H. Deng, S. Xiao, Z. Zhang, J. Tang, L. Deng, W. Hu, J. Alloys Compd. 588 (2014) 163-169. [80] M. Karunaratne, P. Carter, R. Reed, Mater. Sci. Eng. A 281 (20 0 0) 229-233. [81] Z. Zhang, Z. Yue, J. Alloys Compd. 746 (2018) 84-92. [82] X. Lv, J. Zhang, Q. Feng, J. Alloys Compd. 648 (2015) 853-857. [83] K. Cheng, C. Jo, T. Jin, Z. Hu, J. Alloys Compd. 536 (2012) 7-19. [84] M.J. Donachie, S.J. Donachie, Superalloys: A Technical Guide, ASM International, 2002. [85] Z. Zhang, Z. Wen, Z. Yue, Appl. Phys. A 126 (2020) 680. |