J. Mater. Sci. Technol. ›› 2022, Vol. 121: 140-147.DOI: 10.1016/j.jmst.2021.12.060
• Research Article • Previous Articles Next Articles
Qin Wanga, Yao Tongb, Meiting Yanga, Hangtao Yeb, Xiaojuan Liangb,*(
), Xin Wangc,*(
), Weidong Xiangb,*(
)
Received:2021-10-07
Revised:2021-12-08
Accepted:2021-12-14
Published:2022-09-10
Online:2022-03-16
Contact:
Xiaojuan Liang,Xin Wang,Weidong Xiang
About author:xiangweidong001@126.com (W. Xiang).Qin Wang, Yao Tong, Meiting Yang, Hangtao Ye, Xiaojuan Liang, Xin Wang, Weidong Xiang. ZnO induced self-crystallization of CsPb(Br/I)3 nanocrystal glasses with improved stability for backlight display application[J]. J. Mater. Sci. Technol., 2022, 121: 140-147.
| Samples | SiO2 | B2O3 | ZnO | PbI2 | NaI | PbBr2 | NaBr | Cs2CO3 |
|---|---|---|---|---|---|---|---|---|
| R1 | 20 | 27 | 20 | 5 | 9 | 2 | 5 | 7 |
| R2 | 20 | 27 | 13 | 5 | 9 | 2 | 5 | 7 |
| R3 | 20 | 27 | 10 | 5 | 9 | 2 | 5 | 7 |
| R4 | 20 | 27 | 7 | 5 | 9 | 2 | 5 | 7 |
| R5 | 20 | 27 | 4 | 5 | 9 | 2 | 5 | 7 |
Table 1. Compositions of different molar content ZnO-induced self-crystallization CsPb(Br/I)3 NCs glasses (mol.%).
| Samples | SiO2 | B2O3 | ZnO | PbI2 | NaI | PbBr2 | NaBr | Cs2CO3 |
|---|---|---|---|---|---|---|---|---|
| R1 | 20 | 27 | 20 | 5 | 9 | 2 | 5 | 7 |
| R2 | 20 | 27 | 13 | 5 | 9 | 2 | 5 | 7 |
| R3 | 20 | 27 | 10 | 5 | 9 | 2 | 5 | 7 |
| R4 | 20 | 27 | 7 | 5 | 9 | 2 | 5 | 7 |
| R5 | 20 | 27 | 4 | 5 | 9 | 2 | 5 | 7 |
Fig. 1. (a) Photographs of self-crystallization CsPb(Br/I)3 NCs under daylight (white background) and UV light (black background). (b) PL spectra of R1-R4. (c) Absorption spectra of self-crystallization CsPb(Br/I)3 NCs glasses (R1-R5).
| Sample | Emission maximum (nm) | FWHM (nm) | PLQY (%) |
|---|---|---|---|
| R1 | 630.05 ± 2 | 34.38 | 10.6 |
| R2 | 627.3 ± 2 | 35.84 | 26 |
| R3 | 620.68 ± 2 | 36.57 | 16.7 |
| R4 | 619.89 ± 2 | 44.49 | 9.7 |
Table 2. Different content of ZnO, emission wavelength, FWHM, and corresponding PLQY values of CsPb(Br/I)3 NCs glasses.
| Sample | Emission maximum (nm) | FWHM (nm) | PLQY (%) |
|---|---|---|---|
| R1 | 630.05 ± 2 | 34.38 | 10.6 |
| R2 | 627.3 ± 2 | 35.84 | 26 |
| R3 | 620.68 ± 2 | 36.57 | 16.7 |
| R4 | 619.89 ± 2 | 44.49 | 9.7 |
Fig. 3. (a-c) TEM images of R2, R4, and R5 NCs glasses by self-crystallization. (d-f) HRTEM images of R2, R4, and R5 NCs glasses. (g-j) EDS mapping images of Cs, Pb, Br, and I of self-crystallization CsPb(Br/I)3 NCs glass.
Fig. 5. XPS spectra of (a) B 1 s, (b) Si 2p, and (c) Zn 2p. (d-f) SEM patterns and (g-i) cross-section SEM patterns of R2, R4, and R5 ZnO induced self-crystallization of CsPb(Br/I)3 NCs glasses.
Fig. 6. (a) Normalized PL intensity for R2 sample vs storing times in water. For comparison, the water resistance of corresponding colloidal NCs was also examined. (b) Ratio of emission intensity to an original intensity between ten cycles of 30 °C to 200 °C. (c) Time-dependent PL intensity as the red-emitting perovskite R2 sample vs CsPb(Br/I)3 colloidal NCs exposed to continuous 2 W LED in air. (d) Lead concentration in solution after 60 days’ water-resistance of R2.
Fig. 7. EL spectra of (a) the wLED. (b) wLED devices based on R2 after operating voltage at 5.0 V for 1 h and 60 h. (c) backlight image. (d) CIE color coordinates of the wLED containing R2 (red triangle), NTSC (blue triangle), and Rec. 2020 standard (white triangle).
| [1] |
P.F. Fu, Q.S. Shan, Y.Q. Shang, J.Z. Song, H.B. Zeng, Z.J. Ning, J.K. Gong, Sci. Bull. 62 (2017) 369-380.
DOI URL |
| [2] |
Q.A. Akkerman, G. Raino, M.V. Kovalenko, L. Manna, Nat. Mater. 17 (2018) 394-405.
DOI URL PMID |
| [3] |
Q.S. Chen, J. Wu, X.Y. Ou, B.L. Huang, J. Almutlaq, A. A. Zhumekenov, X.W. Guan, S.Y. Han, L.L. Liang, Z.G. Yi, J. Li, X.J. Xie, Y. Wang, Y. Li, D.Y. Fan, D.B.L. Teh, A.H. All, O.F. Mohammed, O.M. Bakr, T. Wu, M. Bettinelli, H.H. Yang, W. Huang, X.G. Liu, Nature 561 (2018) 88-93.
DOI URL |
| [4] |
C.Y. Huang, C. Zou, C. Mao, K.L. Corp, Y.C. Yao, Y.J. Lee, C.W. Schlenker, A.K.Y. Jen, L.Y. Lin, ACS Photonics 4 (2017) 2281-2289.
DOI URL |
| [5] |
B. Du, Y.D. Xia, Q. Wei, G.C. Xing, Y.H. Chen, W. Huang, ChemNanoMat 5 (2019) 266-277.
DOI URL |
| [6] |
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nano Lett. 15 (2015) 3692-3696.
DOI URL PMID |
| [7] | X.M. Li, F. Cao, D.J. Yu, J. Chen, Z.G. Sun, Y.L. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, H.B. Zeng, Small 13 (2017) |
| [8] |
X. Zhao, J.D.A. Ng, R.H. Friend, Z.K. Tan, ACS Photonics 5 (2018) 3866-3875.
DOI URL |
| [9] |
Q. Zhang, Y.D. Yin, ACS Cent. Sci. 4 (2018) 668-679.
DOI URL |
| [10] | K. Zhang, D.C. Zhou, J.B. Qiu, Q. Wang, J. Lai, D.Z. Wang, Z.C. Li, W.H. Shen, J. Alloy. Compd. 826 (2020) |
| [11] |
X.K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang, R.H. Friend, F. Gao, Nat. Mater. 20 (2020) 10-21.
DOI URL |
| [12] |
X.Y. Shen, C. Sun, X. Bai, X.Y. Zhang, Y. Wang, Y.D. Wang, H.W. Song, W.W. Yu, ACS Appl. Mater. Interfaces 10 (2018) 16768-16775.
DOI URL |
| [13] | X.Q. Xiang, H. Lin, J. Xu, Y. Cheng, C.Y. Wang, L.Q. Zhang, Y.S. Wang, Chem. Eng. J. 378 (2019) |
| [14] | L. Lei, Q. Dong, K. Gundogdu, F. So, Adv. Funct. Mater. 31 (2021) |
| [15] | Q. Zhang, R. Su, W.N. Du, X.F. Liu, L.Y. Zhao, S.T. Ha, Q.H. Xiong, Small Methods 1 (2017) |
| [16] |
H.Y. Dong, C.H. Zhang, X.L. Liu, J.N. Yao, Y.S. Zhao, Chem. Soc. Rev. 49 (2020) 951-982.
DOI URL |
| [17] |
F. Liu, C. Ding, Y.H. Zhang, T. Kamisaka, Q. Zhao, J.M. Luther, T. Toyoda, S. Hayase, T. Minemoto, K. Yoshino, B. Zhang, S.Y. Dai, J.K. Jiang, S.X. Tao, Q. Shen, Chem. Mat. 31 (2019) 798-807.
DOI URL |
| [18] |
F. Liu, C. Ding, Y.H. Zhang, T.S. Ripolles, T. Kamisaka, T. Toyoda, S. Hayase, T. Minemoto, K. Yoshino, S.Y. Dai, M. Yanagida, H. Noguchi, Q. Shen, J. Am. Chem. Soc. 139 (2017) 16708-16719.
DOI URL |
| [19] | D.L. Zhou, D.L. Liu, G.C. Pan, X. Chen, D.Y. Li, W. Xu, X. Bai, H.W. Song, Adv. Mater. 29 (2017) |
| [20] | N. Ding, W. Xu, D.F. Zhou, Y.N. Ji, Y. Wang, R. Sun, X. Bai, J. Zhou, H.W. Song, Nano Energy 78 (2020) |
| [21] | D.Z. Wang, J.B. Qiu, D.C. Zhou, S.H. Hu, Y.G. Wen, K. Zhang, Q. Wang, Y. Yang, H. Wu, Z.W. Long, X.Z. Li, J.C. Pi, E.H. Cao, Chem. Eng. J. 421 (2021) |
| [22] |
Q. Jiang, Y. Zhao, X.W. Zhang, X.L. Yang, Y. Chen, Z.M. Chu, Q.F. Ye, X.X. Li, Z.G. Yin, J.B. You, Nat. Photonics 13 (2019) 460-466.
DOI URL |
| [23] | M.A. Mahmud, T. Duong, Y. Yin, H.T. Pham, D. Walter, J. Peng, Y.L. Wu, L. Li, H.P. Shen, N.D. Wu, N. Mozaffari, G. Andersson, K.R. Catchpole, K.J. Weber, T.P. White, Adv. Funct. Mater. 30 (2020) |
| [24] |
Y. Zhai, X. Bai, G.C. Pan, J.Y. Zhu, H. Shao, B. Dong, L. Xu, H.W. Song, Nanoscale 11 (2019) 2484-2491.
DOI URL PMID |
| [25] |
D. Ricciarelli, E. Mosconi, B. Merabet, O. Bizzarri, F. De Angelis, J. Phys. Chem. Lett. 11 (2020) 5482-5489.
DOI URL PMID |
| [26] | S. He, C.C. Ruan, Y.J. Shi, G.Y. Chen, Y.S. Ma, H.M. Dai, X.F. Chen, X.B. Yang, J. Hazard. Mater. 405 (2021) |
| [27] |
B. Luo, Y.C. Pu, S.A. Lindley, Y. Yang, L. Lu, Y. Li, X. Li, J.Z. Zhang, Angew. Chem. Int. Ed. 55 (2016) 8864-8868.
DOI URL |
| [28] |
D.N. Dirin, L. Protesescu, D. Trummer, I.V. Kochetygov, S. Yakunin, F. Krumeich, N.P. Stadie, M.V. Kovalenko, Nano Lett. 16 (2016) 5866-5874.
DOI URL |
| [29] |
S.Q. Huang, Z.C. Li, L. Kong, N.W. Zhu, A.D. Shan, L. Li, J. Am. Chem. Soc. 138 (2016) 5749-5752.
DOI URL |
| [30] |
B. Ai, C. Liu, J. Wang, J. Xie, J.J. Han, X.J. Zhao, J. Am. Ceram. Soc. 99 (2016) 2875-2877.
DOI URL |
| [31] | Y. Ye, W.C. Zhang, Z.Y. Zhao, J. Wang, C. Liu, Z. Deng, X.J. Zhao, J.J. Han, Adv. Opt. Mater. 7 (2019) |
| [32] | Y.Z. Hu, W.C. Zhang, Y. Ye, Z.Y. Zhao, C. Liu, A.C.S. Appl, Nano Mater. 3 (2019) 850-857. |
| [33] |
D.Q. Chen, Y. Liu, C.B. Yang, J.S. Zhong, S. Zhou, J.K. Chen, H. Huang, Nanoscale 11 (2019) 17216-17221.
DOI URL |
| [34] |
S.J. Liu, Y.K. Luo, M.L. He, X.J. Liang, W.D. Xiang, J. Eur. Ceram. Soc. 38 (2018) 1998-2004.
DOI URL |
| [35] | C.Y. Sun, X.Z. Wang, Y.M. Xu, W.B. Lu, X.Y. Teng, G.S. Fu, W. Yu, Appl. Surf. Sci. 508 (2020) |
| [36] |
P. Vashishtha, J.E. Halpert, Chem. Mater. 29 (2017) 5965-5973.
DOI URL |
| [37] | Q. Wang, M.F.F. Jin, Y. Chen, Y. Zhao, Y. Tong, Z.Y. He, X.J. Liang, W.D. Xiang, Adv. Opt. Mater. 9 (2021) |
| [38] | D.Q. Chen, S. Yuan, X. Chen, J.N. Li, Q.N. Mao, X.Y. Li, J.S. Zhong, J. Mater. Chem. C 6 (2018) 6 832-6 839. |
| [39] |
D.Q. Chen, S. Yuan, J.K. Chen, J.S. Zhong, X.H. Xu, J. Mater. Chem. C 6 (2018) 12864-12870.
DOI URL |
| [40] | S.J. Liu, M.L. He, X.X. Di, P.Z. Li, W.D. Xiang, X.J. Liang, Ceram. Int. 44 (2018) 4 496-4 499. |
| [41] | R.Y. Yuan, J.M. Liu, H.L. Zhang, Z.L. Zhang, G.Z. Shao, X.J. Liang, W.D. Xiang, J. Am. Ceram. Soc. 101 (2018) 4 927-4 932. |
| [42] | C.Y. Shen, Y. Zhao, L. Yuan, L. Ding, Y. Chen, H.S. Yang, S.M. Liu, J.H. Nie, W.D. Xiang, X.J. Liang, Chem. Eng. J. 382 (2020) |
| [43] |
S.N. Liu, G.Z. Shao, L. Ding, J.M. Liu, W.D. Xiang, X.J. Liang, Chem. Eng. J. 361 (2019) 937-944.
DOI URL |
| [44] | G.Z. Shao, S.N. Liu, L. Ding, Z.L. Zhang, W.D. Xiang, X.J. Liang, Chem. Eng. J. 375 (2019) |
| [45] |
W.L. Zhou, M.H. Fang, S.X. Lian, R.S. Liu, ACS Appl. Mater. Interfaces 10 (2018) 17508-17511.
DOI URL |
| [46] | Y.Z. Peng, D.Q. Chen, J.S. Zhong, X.Y. Li, Q.N. Mao, F.F. Chi, J. Alloy. Compd. 767 (2018) 6 82-6 89. |
| [47] |
W.H. Shen, J.A. Lai, Y. Yang, D.C. Zhou, J.B. Qiu, M.I. Khan, Z.C. Li, Q. Wang, K. Zhang, Ceram. Int. 46 (2020) 14173-14177.
DOI URL |
| [48] |
Z.M. Zhao, F.F. Hu, Z.M. Cao, F.F. Chi, X.T. Wei, Y.H. Chen, C.K. Duan, M. Yin, Ceram. Int. 43 (2017) 14951-14955.
DOI URL |
| [49] |
Y.M. Duan, P.P. Li, Y. Lu, S.Q. Xu, J.J. Zhang, Ceram. Int. 47 (2021) 24198-24206.
DOI URL |
| [50] |
M.M. Tavakoli, R. Tavakoli, P. Yadav, J. Kong, J. Mater. Chem. A 7 (2019) 679-686.
DOI URL |
| [51] | W.X. Ouyang, J.X. Chen, Z.F. Shi, X.S. Fang, Appl. Phys. Rev. 8 (2021) |
| [52] |
Y.H. Chen, L.X. Su, M.M. Jiang, X.S. Fang, J. Mater. Sci. Technol. 105 (2022) 259-265.
DOI URL |
| [53] |
H. Gui, C. Li, C.W. Lin, Q. Zhang, Z.W. Luo, L. Han, J.L. Liu, T.Y. Liu, A.X. Lu, J. Eur. Ceram. Soc. 39 (2019) 1397-1410.
DOI URL |
| [54] | W.H. Shen, Y. Yang, Z.C. Li, M.I. Khan, E.H. Cao, D.C. Zhou, J.B. Qiu, J. Non Cryst. Solids 523 (2019) |
| [55] |
A. Swarnkar, R. Chulliyil, V.K. Ravi, M. Irfanullah, A. Chowdhury, A. Nag, Angew. Chem. Int. Ed. 54 (2015) 15424-15428.
DOI URL |
| [56] |
X.J. Huang, Q.Y. Guo, D.D. Yang, X.D. Xiao, X.F. Liu, Z.G. Xia, F.J. Fan, J.R. Qiu, G.P. Dong, Nat. Photonics 14 (2019) 82-88.
DOI URL |
| [57] |
A.M. Rodrigues, J.M. Rivas Mercury, V.S. Leal, A. A. Cabral, J. Non Cryst. Solids 362 (2013) 114-119.
DOI URL |
| [58] |
R. Svoboda, J. Málek, Thermochim. Acta 526 (2011) 237-251.
DOI URL |
| [59] |
P. Amista, M. Cesari, A. Montenero, G. Gnappi, L. Lan, J. Non Cryst. Solids 192-193 (1995) 529-533.
DOI URL |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
