J. Mater. Sci. Technol. ›› 2022, Vol. 107: 1-13.DOI: 10.1016/j.jmst.2021.08.022
• Research Article • Next Articles
Rutuja Mandavkar, Shusen Lin, Rakesh Kulkarni, Sanchaya Pandit, Shalmali Burse, Md Ahasan Habib, Puran Pandey, Sundar Kunwar*(
), Jihoon Lee*(
)
Received:2021-07-14
Revised:2021-08-20
Accepted:2021-08-30
Published:2022-04-30
Online:2022-04-28
Contact:
Sundar Kunwar,Jihoon Lee
About author:jihoonlee@kw.ac.kr(J. Lee).Rutuja Mandavkar, Shusen Lin, Rakesh Kulkarni, Sanchaya Pandit, Shalmali Burse, Md Ahasan Habib, Puran Pandey, Sundar Kunwar, Jihoon Lee. Dual-step hybrid SERS scheme through the blending of CV and MoS2 NPs on the AuPt core-shell hybrid NPs[J]. J. Mater. Sci. Technol., 2022, 107: 1-13.
Fig. 1. (a) Schematic illustration of AuPt hybrid nanoparticle (HNP) fabrication.HNP indicates the core-shelled AuPt NPs with the background Au nanoparticles (NPs). (b) Localized surface plasmon resonance (LSPR) of HNPs. (b-1) E-field distribution of HNP by the finite-difference time-domain (FDTD) simulation. (c) Dual-step hybrid SERS scheme through the blending of CV and MoS2 NPs on the core-shell AuPt hybrid NPs. (d) SERS spectra of 10-6 M CV by different approaches: (a-1) 10:1 mixture of CV and MoS2 NPs on AuPt HNPs, (a-2) CV on MoS2 layer/AuPt HNPs, and (a-3) CV on AuPt HNPs.
Fig. 2. (a, b) Schematic representations of AuPt HNPs with the background Au and AuPt core-shell NPs.(c, c-1) AFM top-views of 10 nm Pt NP template. (c-2) Cross-sectional line profile of the Pt NP template. (d) A plot of SAR and Rq at different annealing temperatures. (e)-(h) AFM top-views of AuPt HNPs at different temperatures ranging from 0 to 800 °C. (e-1)-(h-1) Cross-sectional line-profiles on the primary AuPt NP. (f-2)-(h-2) Cross-sectional line-profiles on the background Au NPs. (i) Atomic percentage of AuPt HNPs at different temperatures.
Fig. 3. Elemental analysis of core-shell AuPt HNPs fabricated with 5 nm Au deposited on 10 nm Pt template.(a)-(a-3) Large scale SEM image and EDS phase maps for the sample annealed at 600 °C. (b)-(b-3) Large-scale SEM image and EDS phase maps at 800 °C. (c) and (d) EDS line-profiles corresponding to the lines in the SEM images at 600 and 800 °C respectively. (e) and (f) EDS spectra of core-shell AuPt HNPs. (e-1) and (f-1) Zoom-in of Au and Pt peaks. (e-2) and (f-2) Au and Pt atomic percentage tables.
Fig. 4. Optical property and simulation of hybrid AuPt core-shell NPs fabricated with 5 nm Au deposited on 10 nm Pt template.(a)-(c) Excitation (E), reflection (R) and transmittance (T) spectra. (a-1)-(c-1) Contour plots for the ERT spectra of AuPt core-shell NPs. (d) and (e) Schematic representations of pure Pt NP and AuPt HNPs. (d-1) and (e-1) Local e-field distribution of NPs simulated by FDTD.
Fig. 5. Morphology evolution of fully alloyed AuPt alloy NPs fabricated with 10 nm Au deposition on 10 nm Pt template followed by annealing at different temperatures.(a)-(d) AFM top-views of fully alloyed AuPt NPs at different annealing temperatures. (a-1)-(d-1) Magnified AFM side-views of 750 nm × 750 nm. (a-2)-(d-2) Corresponding cross-sectional line-profiles. (e) Schematic of the AuPt alloy NP synthesis with the thicker Au coating by the two-step SSD. (f) Rq and SAR. (g) Atomic percentage distribution of Au and Pt. (h)-(k) AFM top-views of AuPt alloy NPs with the 40 nm Pt template and 40 nm Au deposition.
Fig. 6. Elemental and optical analyses of AuPt alloy NPs with 10 nm Au deposited on 10 nm Pt template. (a) and (b) Large-scale SEM images of the sample annealed at 600 and 800 °C. (a-1)-(a-4) EDS phase maps for Pt, Al, Au and O at 600 °C. (a-5) EDS line-profile corresponding to the line in (a). (b-1)-(b-4) EDS phase maps at 800 °C. (b-5) EDS line-profile from the line in (b). (c) Extinction spectra of AuPt alloy NPs. (c-1) Normalized extinction plots. (c-2) Contour plot of normalized extinction. (d) and (e) Reflectance and transmittance spectra of AuPt alloy NPs. (f) Local e-field distribution of alloy NPs simulated by FDTD. The alloy NP was imported from the AFM image.
Fig. 7. (a) Raman and SERS spectra on various substrates as labelled: (a-1) bare sapphire, (a-2) AuPt HNPs, (a-3) 10-6 M CV on sapphire, (a-4) 10-6 M CV on AuPt HNPs, (a-5) 10-6 M CV on MoS2 NP layer on sapphire and (a-6) 1:1 mixture of 10-6 M CV and MoS2 on AuPt HNPs. (b) Bar diagrams summarizing the SERS signal intensity at 4 different peaks of CV. (c) CV molarity variation on AuPt HNPs between 10-4 and 10-7 M. (d) Bar diagram of SERS intensity at each molarity. (e) SERS spectra by the mixture ratio variation of 10-6 M CV and MoS2 (such as 10:1, 2:1 and 1:1) on AuPt HNPs. (f) Corresponding SERS signal intensity.
Fig. 8. SERS signal comparison between CV and mixture with MoS2 NPs.(a)-(c) SERS of 10-7 M, 10-6 M and 10-5 M CV and 10:1 (CV and MoS2) mixture on AuPt HNPs. (a-1)-(c-1) Peak counts of corresponding SERS intensity.
Fig. 9. (a) SERS intensity comparison with 10-6 M CV: (a-1) with the 10:1 mixture CV and MoS2 on AuPt HNPs, (a-2) CV on MoS2 layer over AuPt HNPs and (a-3) CV on AuPt HNPs. (b) Bar graph comparison. (c) Schematic of LSPR and SERS generated in the AuPt HNPs. (d) Local e-field simulation of MoS2 NPs on AuPt HNPs. (e) Schematic of charge generation and transfer process in the semiconducting MoS2 NPs and CV under the illumination. (f) Illustration of electromagnetic enhancement by the AuPt hybrid core-shell NPs and chemical enhancement by the MoS2 NPs.
| [1] |
J. Fang, S. Du, S. Lebedkin, Z. Li, R. Kruk, M. Kappes, H. Hahn, Nano Lett. 10(2010) 5006-5013.
DOI URL |
| [2] |
C. Tian, C. Ding, S. Liu, S. Yang, X. Song, B. Ding, Z. Li, J. Fang, ACS Nano 5 (2011) 9442-9449.
DOI URL |
| [3] |
D. Su, S. Jiang, M. Yu, G. Zhang, H. Liu, M.-.Y. Li, Nanoscale 10 (2018) 22737-22744.
DOI URL |
| [4] |
L. Wu, W. Wang, W. Zhang, H. Su, Q. Liu, J. Gu, T. Deng, D. Zhang, NPG Asia Mater 10 (2018) e462-e462.
DOI URL |
| [5] |
Z. Lian, M. Sakamoto, H. Matsunaga, J.J.M. Vequizo, A.Yamakata, M. Haruta, H. Kurata, W. Ota, T. Sato, T. Teranishi, Nat. Commun. 9(2018) 2314.
DOI URL |
| [6] |
S. Yang, J. Yao, Y. Quan, M. Hu, R. Su, M. Gao, D. Han, J. Yang, Light Sci. Appl. 9(2020) 117.
DOI URL |
| [7] | Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, Z. Zhao, Nat. Com- mun. 8(2017) 2-11. |
| [8] |
H. Chen, L. Su, M. Jiang, X. Fang, Adv. Funct. Mater. 27(2017) 1704181.
DOI URL |
| [9] | G.X. Cai, F. Ren, X.H. Xiao, L.X. Fan, X.D. Zhou, C.Z. Jiang, J. Mater. Sci. Technol. 25(2009) 669-672. |
| [10] |
Z. Liu, Y. Zhong, I. Shafei, R. Borman, S. Jeong, J. Chen, Y. Losovyj, X. Gao, N. Li, Y. Du, E. Sarnello, T. Li, D. Su, W. Ma, X. Ye, Nat. Commun. 10(2019) 1394.
DOI URL |
| [11] | M.W. Knight, N.S. King, L. Liu, H.O. Everitt, P. Nordlander, N.J. Halas, ACS Nano 8 (2014) 834-840. |
| [12] |
X. Zhao, H. Zhao, L. Yan, N. Li, J. Shi, C. Jiang, Crit. Rev. Anal. Chem. 50(2020) 97-110.
DOI URL |
| [13] |
M.J. Paulo, R.H.D. Venancio, R.G. Freitas, E.C. Pereira, A.C. Tavares, J. Electroanal. Chem. 840(2019) 367-375.
DOI URL |
| [14] |
V. Klimavicius, S. Neumann, S. Kunz, T. Gutmann, G. Buntkowsky, Catal. Sci. Technol. 9(2019) 3743-3752.
DOI URL |
| [15] |
R. Shen, W. Chen, Q. Peng, S. Lu, L. Zheng, X. Cao, Y. Wang, W. Zhu, J. Zhang, Z. Zhuang, C. Chen, D. Wang, Y. Li, Chem 5 (2019) 2099-2110.
DOI URL |
| [16] |
Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, C. Zhang, Opt. Express 26 (2018) 21784-21796.
DOI PMID |
| [17] |
X. Ma, H. Sun, Y. Wang, X. Wu, J. Zhang, Nano Energy 53 (2018) 932-939.
DOI URL |
| [18] |
D. Liu, X. Chen, Y. Hu, T. Sun, Z. Song, Y. Zheng, Y. Cao, Z. Cai, M. Cao, L. Peng, Y. Huang, L. Du, W. Yang, G. Chen, D. Wei, A.T.S. Wee, D. Wei, Nat. Commun. 9(2018) 193.
DOI URL |
| [19] | H.W. Wagner, C.O. Schiebl, W.S.M. Werner, in: D. Benoit, J.F. Bresse, L. Van’t dack, H. Werner, J. Wernisch (Eds.), Microbeam and Nanobeam Analsis, Springer, 1996, pp. 623-629. |
| [20] | N.A. Hassan, A.M. Hashim, Mater. Today Proc 7 (2019) 607-611. |
| [21] |
M. Oliva-Ramírez, D. Wang, D. Flock, V. Rico, A.R. González-Elipe, P. Schaaf, ACS Appl. Mater. Interfaces 13 (2021) 11385-11395.
DOI URL |
| [22] |
S. Pandit, S. Kunwar, R. Kulkarni, R. Mandavka, S. Lin, J. Lee, Appl. Surf. Sci. 548(2021) 149252.
DOI URL |
| [23] |
W.M. Abbott, C.P. Murray, C. Zhong, C. Smith, C. McGuinness, E. Rezvani, C. Downing, D. Daly, A.K. Petford-Long, F. Bello, D. McCloskey, J.F. Donegan, ACS Appl. Mater. Interfaces 11 (2019) 7607-7614.
DOI URL |
| [24] | X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, M. Sun, Mater. Today Energy 5 (2017) 72-78. |
| [25] |
B. Yang, S. Jin, S. Guo, Y. Park, L. Chen, B. Zhao, Y.M. Jung, ACS Omega 4 (2019) 20101-20108.
DOI PMID |
| [26] |
E. Er, H.-.L. Hou, A.Criado, J. Langer, M. Möller, N. Erk, L.M. Liz-Marzán, M. Prato, Chem. Mater. 31(2019) 5725-5734.
DOI URL |
| [27] |
P. Miao, Y. Ma, M. Sun, J. Li, P. Xu, Faraday Discuss 214 (2019) 297-307.
DOI URL |
| [28] |
H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y.Y. Xu, B. Man, C. Yang, Sens. Actuators B 282 (2019) 809-817.
DOI URL |
| [29] |
C. Li, S. Xu, J. Yu, S. Jiang, A. Liu, Z. Li, S. Zhang, X. Zhao, C. Zhang, B. Man, Sens. Actuators B 274 (2018) 152-162.
DOI URL |
| [30] |
H. Lai, G. Ma, W. Shang, D. Chen, Y. Yun, X. Peng, F. Xu, Chemosphere 223 (2019) 465-473.
DOI URL |
| [31] | S. Kunwar, S. Pandit, R. Kulkarni, R. Mandavkar, S. Lin, M. Li, J. Lee, ACS Appl. Mater. Interfaces 13 (2021) 3408-3418. |
| [32] |
S. Kunwar, M. Sui, P. Pandey, Z. Gu, S. Pandit, J. Lee, RSC Adv. 9(2019) 2231-2243.
DOI URL |
| [33] |
S. Kunwar, P. Pandey, S. Pandit, M. Sui, J. Lee, Appl. Surf. Sci. 504(2020) 144545.
DOI URL |
| [34] | M. Sui, S. Kunwar, P. Pandey, J. Lee, Sci. Rep. 9(2019) 1-14. |
| [35] |
T.A. Estrada-Mendoza, D. Willett, G. Chumanov, J. Phys. Chem. C 124 (2020) 27024-27031.
DOI URL |
| [36] |
W. Ni, X. Kou, Z. Yang, J. Wang, ACS Nano 2 (2008) 677-686.
DOI URL |
| [37] |
V. Torrisi, M. Censabella, G. Piccitto, G. Compagnini, M.G. Grimaldi, F. Ruffino, Coatings 9 (2019) 68.
DOI URL |
| [38] |
H. Sun, M. Yu, X. Sun, G. Wang, J. Lian, J. Phys. Chem. C 117 (2013) 3366-3373.
DOI URL |
| [39] |
L. Cao, L. Tong, P. Diao, T. Zhu, Z. Liu, Chem. Mater. 16(2004) 3239-3245.
DOI URL |
| [40] |
Z. Xu, M.G. Kibria, B. AlOtaibi, P.N. Duchesne, L.V. Besteiro, Y. Gao, Q. Zhang, Z. Mi, P. Zhang, A.O. Govorov, L. Mai, M. Chaker, D. Ma, Appl. Catal. B 221 (2018) 77-85.
DOI URL |
| [41] |
X. Chen, G. Yang, S. Feng, L. Shi, Z. Huang, H. Pan, W. Liu, Appl. Surf. Sci. 402(2017) 232-244.
DOI URL |
| [42] |
P. Pandey, S. Kunwar, M. Sui, S. Bastola, J. Lee, IEEE Trans. Nanotechnol. 17(2018) 325-331.
DOI URL |
| [43] |
J. Thapa, B. Liu, S.D. Woodruff, B.T. Chorpening, M.P. Buric, Appl. Opt. 56(2017) 8598.
DOI URL |
| [44] |
F. Zeng, T. Mou, C. Zhang, X. Huang, B. Wang, X. Ma, J. Guo, Analyst 144 (2019) 137-142.
DOI URL |
| [45] |
S.A. Ghopry, S.M. Sadeghi, Y. Farhat, C.L. Berrie, M. Alamri, J.Z. Wu, ACS Appl. Nano Mater. 4(2021) 2941-2951.
DOI URL |
| [46] |
F.A. Harraz, A.A. Ismail, H. Bouzid, S.A. Al-Sayari, A. Al-Hajry, M.S. Al-Assiri, Appl. Surf. Sci. 331(2015) 241-247.
DOI URL |
| [47] |
T. Li, Y. Xu, Y. Feng, C. Zhang, C. Yang, Z. Sun, H. Zhang, X. Yuan, T. Ning, C. Yang, Appl. Surf. Sci. 423(2017) 1072-1079.
DOI URL |
| [48] |
X. Fei, Z. Liu, Y. Hou, Y. Li, G. Yang, C. Su, Z. Wang, H. Zhong, Z. Zhuang, Z. Guo, Materials 10 (2017) 650.
DOI URL |
| [49] |
B. Rahmati, I. Hajzadeh, M. Taheri, R. Karimzadeh, S. Mohajerzadeh, S.M. Mohseni, Appl. Surf. Sci. 490(2019) 165-171.
DOI URL |
| [50] |
H. Qiu, M. Wang, L. Li, J. Li, Z. Yang, M. Cao, Sens. Actuators B 255 (2018) 1407-1414.
DOI URL |
| [51] | X. Dou, L. Zhao, X. Li, L. Qin, S. Han, S.-.Z. Kang, Appl.Surf. Sci. 509(2020) 145331. |
| [52] |
P. Zuo, L. Jiang, X. Li, B. Li, P. Ran, X. Li, L. Qu, Y. Lu, ACS Sustain. Chem. Eng. 6(2018) 7704-7714.
DOI URL |
| [1] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
