J. Mater. Sci. Technol. ›› 2022, Vol. 105: 153-163.DOI: 10.1016/j.jmst.2021.08.003
• Research Article • Previous Articles Next Articles
Aleksandra Krajcera, Joanna Klaraa, Wojciech Horakb, Joanna Lewandowska-Łańcuckaa,*()
Received:
2021-04-21
Revised:
2021-06-23
Accepted:
2021-08-01
Published:
2021-09-16
Online:
2021-09-16
Contact:
Joanna Lewandowska-Łańcucka
About author:
*E-mail address: lewandow@chemia.uj.edu.pl (J. Lewandowska-Łańncucka).Aleksandra Krajcer, Joanna Klara, Wojciech Horak, Joanna Lewandowska-Łańcucka. Bioactive injectable composites based on insulin-functionalized silica particles reinforced polymeric hydrogels for potential applications in bone tissue engineering[J]. J. Mater. Sci. Technol., 2022, 105: 153-163.
Material | Abbreviation |
---|---|
Col:Ch:HAmod+ SiO2-NH2-INS(electrostatic)-C1 | Hyb-E-C1 |
Col:Ch:HAmod+ SiO2-NH2-INS(electrostatic)-C2 | Hyb-E-C2 |
Col:Ch:HAmod+ SiO2-NH2-INS(electrostatic)-C3 | Hyb-E-C3 |
Col:Ch:HAmod+ SiO2-NH2-INS(covalent)-C1 | Hyb-C-C1 |
Col:Ch:HAmod+ SiO2-NH2-INS(covalent)-C2 | Hyb-C-C2 |
Col:Ch:HAmod+ SiO2-NH2-INS(covalent)-C3 | Hyb-C-C3 |
Col:Ch:HAmod (Col:Ch:HAmod = 50:20:30) | Hydrogel |
Table 1. Overview of synthesized materials with abbreviations employed.
Material | Abbreviation |
---|---|
Col:Ch:HAmod+ SiO2-NH2-INS(electrostatic)-C1 | Hyb-E-C1 |
Col:Ch:HAmod+ SiO2-NH2-INS(electrostatic)-C2 | Hyb-E-C2 |
Col:Ch:HAmod+ SiO2-NH2-INS(electrostatic)-C3 | Hyb-E-C3 |
Col:Ch:HAmod+ SiO2-NH2-INS(covalent)-C1 | Hyb-C-C1 |
Col:Ch:HAmod+ SiO2-NH2-INS(covalent)-C2 | Hyb-C-C2 |
Col:Ch:HAmod+ SiO2-NH2-INS(covalent)-C3 | Hyb-C-C3 |
Col:Ch:HAmod (Col:Ch:HAmod = 50:20:30) | Hydrogel |
Fig. 2. FTIR spectra for insulin, amino-functionalized silica particles (SiO2-NH2) and particles with biomolecules attached electrostatically (SiO2-NH2-INS-E) or covalently (SiO2-NH2-INS-C).
Fig. 3. XPS wide spectra of silica particles with amino groups (SiO2-NH2) and insulin immobilized using electrostatic interactions (SiO2-NH2-INS-E) or covalent bonds (SiO2-NH2--INS-C) with high-resolution results corresponding to O 1s, N 1s, C 1s, S 2p and Si 2p.
Atomic composition (%) | O 1s | N 1s | C 1s | S 2p | Si 2p |
---|---|---|---|---|---|
SiO2-NH2 | 77.8 | 3.6 | 6.8 | 0 | 11.8 |
SiO2-NH2-INS-E | 43.9 | 17.0 | 35.2 | 1.4 | 2.5 |
SiO2-NH2-INS-C | 57.5 | 12.0 | 23.4 | 1.0 | 6.1 |
Table 2. Atomic composition of developed particles: SiO2-NH2; SiO2-NH2-INS-E; SiO2-NH2-INS-C.
Atomic composition (%) | O 1s | N 1s | C 1s | S 2p | Si 2p |
---|---|---|---|---|---|
SiO2-NH2 | 77.8 | 3.6 | 6.8 | 0 | 11.8 |
SiO2-NH2-INS-E | 43.9 | 17.0 | 35.2 | 1.4 | 2.5 |
SiO2-NH2-INS-C | 57.5 | 12.0 | 23.4 | 1.0 | 6.1 |
Fig. 5. SEM microphotographs of three types of particles: SiO2-NH2 (A), SiO2-NH2-INS-E (B), SiO2-NH2-INS-C (C) with their size distributions (D), (E), (F), respectively.
Fig. 6. The values of the storage modulus (G’) measured in 10, 35 and 65 min after starting the experiment are presented on a logarithmic scale. Statistical significance was calculated using Student's t-test. A comparison between two means was analysed with statistical significance level set at p < 0.05; indicates statistical significance when compared with:* control after 65 min, # Hyb-E-C1 after 65 min, & Hyb-E-C2 after 65 min, $ Hyb-C-C1 after 65 min.
Fig. 7. SEM images of hybrid materials containing particles with electrostatically attached insulin: Hyb-E-C1, Hyb-E-C2, and Hyb-E-C3. Yellow arrows indicate the groups of silica carriers’ aggregates..
Fig. 9. SEM micrographs of the surface of pristine hydrogel and hybrid materials after 5 days of incubation in SBF. The insets are SEM images of higher magnification (5000 × ). The Ca/P ratios were determined by EDS analyses.
Fig. 10. (A) Cell number and (B) Alkaline phosphatase activity (ALP) of MG-63 cells grown on the surface of the materials studied on 1st, 3rd and 7th days of the culturing. Indicates statistical significance when compared with: (A)% Hyb-C-C1 day 7 (B) * control day 3; ** control day 7; # Hydrogel; $ Hyb-E-C1;% Hyb-C-C1. Cells cultured on the tissue culture plate (TCP) was considered as a control.
[1] | J. Du, T. Zhu, H. Yu, J. Zhu, C. Sun, S. Chen, J. Wang, X. Guo, Appl. Surf. Sci. (2018). |
[2] |
R. Mishra, T. Bishop, I. Valerio, J. Fisher, D. Dean, Regen. Med. 11 (2016) 571-587.
DOI PMID |
[3] |
J. Aragón, S. Salerno, L. De Bartolo, S. Irusta, G. Mendoza, J. Colloid Interface Sci. 531 (2018) 126-137.
DOI URL |
[4] |
J. Idaszek, E. Kijeńska, M. Łojkowski, W. Swieszkowski, Appl. Surf. Sci. 388 (2016) 762-774.
DOI URL |
[5] | L.E. Murr, J. Mater. Sci. Technol. 35 (2019) 231-241. |
[6] |
S. Jin, L. Ren, K. Yang, J. Mater. Sci. Technol. 32 (2016) 835-839.
DOI URL |
[7] |
N. Ehlert, A. Hoffmann, T. Luessenhop, G. Gross, P.P. Mueller, M. Stieve, T. Lenarz, P. Behrens, Acta Biomater. 7 (2011) 1772-1779.
DOI PMID |
[8] |
T.N. Vo, F.K. Kasper, A.G. Mikos, Adv. Drug Deliv. Rev. 64 (2012) 1292-1309.
DOI URL |
[9] |
S.D. Nath, C. Abueva, B. Kim, B.T. Lee, Carbohydr. Polym. 115 (2015) 207-214.
DOI URL |
[10] |
X. Zhang, H. Xing, F. Qi, H. Liu, L. Gao, X. Wang, Nanotheranostics 4 (2020) 242-255.
DOI URL |
[11] |
D.N. Paglia, A. Wey, E.A. Breitbart, J. Faiwiszewski, S.K. Mehta, L. Al-Zube, S. Vaidya, J.A. Cottrell, D. Graves, J. Benevenia, J.P. O’Connor, S.S. Lin, J. Orthop. Res. 31 (2013) 783-791.
DOI PMID |
[12] |
K. Ishida, T. Matsumoto, K. Sasaki, Y. Mifune, K. Tei, S. Kubo, T. Matsushita, K. Takayama, T. Akisue, Y. Tabata, M. Kurosaka, R. Kuroda, Tissue Eng. - Part A 16 (2010) 3271-3284.
DOI URL |
[13] |
A. Haider, K.C. Gupta, I.K. Kang, Nanoscale Res. Lett. 9 (2014) 1-12.
DOI URL |
[14] | X. Wang, G. Zhang, F. Qi, X. Lu, Y. Cheng, L. Wang, J. Zhao, B. Zhao, Int. J. Nanomed. B 13 (2018) 117-127. |
[15] |
W.F. Lai, A.L. Rogach, W.T. Wong, Compos. Part A Appl. Sci. Manuf. 113 (2018) 318-329.
DOI URL |
[16] |
L. Keller, A. Regiel-Futyra, M. Gimeno, S. Eap, G. Mendoza, V. Andreu, Q. Wagner, A. Kyzioł, V. Sebastian, G. Stochel, M. Arruebo, N. Benkirane-Jessel, Nanomed. Nanotechnol. Biol. Med. 13 (2017) 2231-2240.
DOI URL |
[17] |
Y. Wu, S. Chen, Y. Liu, Z. Lu, S. Song, Y. Zhang, C. Xiong, L. Dong, J. Mater. Sci. Technol. 50 (2020) 139-146.
DOI URL |
[18] |
M. Akbarian, R. Yousefi, F. Farjadian, V.N. Uversky, Chem. Commun. 56 (2020) 11354-11373.
DOI URL |
[19] | M. Akbarian, L. Tayebi, S. Mohammadi-Samani, F. Farjadian, J. Phys. Chem. B 124 (2020) 1637-1652. |
[20] |
K. Wang, W. Cheng, Z. Ding, G. Xu, X. Zheng, M. Li, G. Lu, Q. Lu, J. Mater. Sci. Technol. 63 (2021) 172-181.
DOI URL |
[21] |
M. Goh, Y. Kim, K. Gwon, K. Min, Y.M. Hwang, G. Tae, Carbohydr. Polym. 174 (2017) 990-998.
DOI URL |
[22] |
A. Gilarska, J. Lewandowska-Łańcucka, K. Guzdek-Zaj˛ac, A. Karewicz, W. Horak, R. Lach, K. Wójcik, M. Nowakowska, Int. J. Biol. Macromol. 155 (2020) 938-950.
DOI PMID |
[23] |
J. Lewandowska-Łańcucka, A. Gilarska, A. Buła, W. Horak, A. Łatkiewicz, M. Nowakowska, Int. J. Biol. Macromol. 136 (2019) 1196-1208.
DOI PMID |
[24] |
S.Y. Venyaminov, N.N. Kalnin, Biopolymers 30 (1990) 1243-1257.
PMID |
[25] |
S. Azarshin, J. Moghadasi, Z.A. Aboosadi, Energy Explor. Exploit. 35 (2017) 685-697.
DOI URL |
[26] |
B. Jović, M. Panić, N. Radnović, K. Živojević, M. Mladenović, V. Crnojević, N. Knežević, J. Mol. Struct. 1219 (2020) 128562.
DOI URL |
[27] |
J. Lewandowska-Łańcucka, M. Staszewska, M. Szuwarzyński, S. Zapotoczny, M. Kepczynski, Z. Olejniczak, B. Sulikowski, M. Nowakowska, Mater. Des. 146 (2018) 57-68.
DOI URL |
[28] |
L. Nielsen, S. Frokjaer, J.F. Carpenter, J. Brange, J. Pharm. Sci. 90 (2001) 29-37.
DOI URL |
[29] |
S.E. Kim, Y.P. Yun, K.S. Shim, K. Park, S.W. Choi, D.H. Shin, D.H. Suh, Colloid Surf. B-Biointerfaces 134 (2015) 453-460.
DOI URL |
[30] |
J. Lewandowska-Łańcucka, K. Mystek, A. Mignon, S. Van Vlierberghe, A. Łatkiewicz, M. Nowakowska, Carbohydr. Polym. 157 (2017) 1714-1722.
DOI URL |
[31] |
C.J.S. Ibsen, D. Chernyshov, H. Birkedal, Chem. - A Eur. J. 22 (2016) 12347-12357.
DOI URL |
[32] |
S.E. Kim, Y.P. Yun, J.Y. Lee, K. Park, D.H. Suh, Colloid Surf. B-Biointerfaces 123 (2014) 191-198.
DOI URL |
[33] |
M.P. Whyte, Endocr. Rev. 15 (1994) 439-461.
PMID |
[34] |
H.I. Roach, Histochem. J. 31 (1999) 53-61.
DOI PMID |
[35] |
S.E. Kim, D.H. Suh, Y.P. Yun, J.Y. Lee, K. Park, J.Y. Chung, D.W. Lee, J. Mater. Sci. Mater. Med. 23 (2012) 2739-2749.
DOI URL |
[36] |
Y. Ito, Shu Qin Liu, Y. Imanishi, Biomaterials 12 (1991) 449-453.
PMID |
[37] | A. Mikulska, J. Filipowska, A.M. Osyczka, M. Nowakowska, K. Szczubia ˚A,ka, Front. Chem. 2 (2015) 1-7. |
[38] |
A.M. Osyczka, P.S. Leboy, Endocrinology 146 (2005) 3428-3437.
PMID |
[39] |
S. Kim, Y. Kang, C.A. Krueger, M. Sen, J.B. Holcomb, D. Chen, J.C. Wenke, Y. Yang, Acta Biomater. 8 (2012) 1768-1777.
DOI URL |
[1] | Sadat-Shojai Mehdi. Electrospun Polyhydroxybutyrate/Hydroxyapatite Nanohybrids: Microstructure and Bone Cell Response [J]. J. Mater. Sci. Technol., 2016, 32(10): 1013-1020. |
[2] | Mehdi Ebrahimian-Hosseinabadi Fakhredin Ashrafizadeh Mohammadreza Etemadifar Subbu S. Venkatraman. Evaluating and Modeling the Mechanical Properties of the Prepared PLGA/nano-BCP Composite Scaffolds for Bone Tissue Engineering [J]. J Mater Sci Technol, 2011, 27(12): 1105-1112. |
[3] | Fang Geng,Lili Tan,Bingchun Zhang,Chunfu Wu,Yonglian He,Jingyu Yang,Ke Yang. Study on β-TCP Coated Porous Mg as a Bone Tissue Engineering Scaffold Material [J]. J Mater Sci Technol, 2009, 25(01): 123-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||