J. Mater. Sci. Technol. ›› 2022, Vol. 104: 52-58.DOI: 10.1016/j.jmst.2021.06.055
• Research Article • Previous Articles Next Articles
M.C. Niua,b,c, K. Yangb, J.H. Luand, W. Wangb,*(), Z.B. Jiaoc,e,*(
)
Received:
2021-04-19
Revised:
2021-06-26
Accepted:
2021-06-27
Published:
2022-03-30
Online:
2022-03-30
Contact:
W. Wang,Z.B. Jiao
About author:
zb.jiao@polyu.edu.hk (Z.B. Jiao).M.C. Niu, K. Yang, J.H. Luan, W. Wang, Z.B. Jiao. Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels[J]. J. Mater. Sci. Technol., 2022, 104: 52-58.
Cr | Ni | Co | Mo | Cu | Fe | |
---|---|---|---|---|---|---|
Cu-free steel | 12.38 | 7.41 | 7.53 | 2.93 | - | Balance |
Cu-containing steel | 12.31 | 7.48 | 7.47 | 3.09 | 0.96 | Balance |
Table 1 Chemical compositions of the steels measured by chemical analysis (wt.%).
Cr | Ni | Co | Mo | Cu | Fe | |
---|---|---|---|---|---|---|
Cu-free steel | 12.38 | 7.41 | 7.53 | 2.93 | - | Balance |
Cu-containing steel | 12.31 | 7.48 | 7.47 | 3.09 | 0.96 | Balance |
Fig. 1. Mechanical properties of the Cu-free and Cu-containing steels: (a) engineering tensile stress-strain curves of the steels in the as-quenched and 60-h aged conditions, (b) work hardening rate curves and true stress-strain curves of the steels in the 60-h aged condition, and (c) elongations and Charpy impact energies in the 60-h aged condition.
Fig. 2. Microstructure of Mo-enriched and Cu-rich precipitates: (a) bright-field TEM image of the Cu-containing steel in the 60-h aged condition, HR-TEM images of (b) 9R Cu and (d) Laves phase, (c) and (e) are the corresponding FFT patterns of (b) and (d), respectively, (f) APT microstructure of Cu-rich and Mo-enriched precipitates, and (g) and (h) are the proximity histograms of Cu-rich and Mo-enriched precipitates, respectively.
Fig. 3. Microstructure of reverted austenite before deformation: XRD patterns of the (a) Cu-free and (b) Cu-containing steels in the as-quenched and aged conditions, (c) volume fractions of reverted austenite as a function of aging time, (d) EBSD phase maps for the Cu-containing steel in the 60-h aged condition.
Fig. 4. Microstructure of reverted austenite before deformation: (a) the TEM micrograph of the Cu-containing steel in the 60-h condition, (b) the SAED pattern corresponding to reverted austenite and matrix in (a), (c) and (d) are the bright-field TEM image and corresponding TEM/EDS elemental mapping of Ni, Cu and Mo, respectively, and (e) and (f) APT microstructure and compositions of Cu-rich precipitates and reverted austenite.
Fig. 5. Microstructure of reverted austenite after deformation: (a) XRD pattern, (b) EBSD phase maps, and (c) bright-field TEM image of the Cu-containing steel after tensile deformation.
[1] |
B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357 (6355) (2017) 1029-1032.
DOI URL |
[2] |
W. Xu, P.E.J. Rivera-Díaz-del-Castillo, W. Yan, K. Yang, D. San Martín, L.A.I. Kestens, S. van der Zwaag, Acta Mater. 58 (11) (2010) 4067-4075.
DOI URL |
[3] |
S. Jiang, H. Wang, Y. Wu, X.J. Liu, H.H. Chen, M.J. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M.W. Chen, Y.D. Wang, Z.P. Lu, Nature 544 (7651) (2017) 460-464.
DOI URL |
[4] |
H. Luo, X. Wang, Z. Liu, Z. Yang, J. Mater. Sci. Technol. 51 (2020) 130-136.
DOI URL |
[5] |
J. Yan, H. Xu, X. Zuo, T. Jia, E. Wang, Mater. Sci. Eng. A 739 (2019) 225-234.
DOI URL |
[6] |
Q. Liu, J. Gu, C. Li, J. Mater. Res. 29 (8) (2014) 950-958.
DOI URL |
[7] |
Y. Ma, W. Song, S. Zhou, A. Schwedt, W. Bleck, Metals 8 (5) (2018) 357.
DOI URL |
[8] |
W.W. Sun, Y.X. Wu, S.C. Yang, C.R. Hutchinson, Scripta Mater. 146 (2018) 60-63.
DOI URL |
[9] |
X.L. Wu, M.X. Yang, F.P. Yuan, L. Chen, Y.T. Zhu, Acta Mater. 112 (2016) 337-346.
DOI URL |
[10] |
M.M. Wang, C.C. Tasan, D. Ponge, D. Raabe, Acta Mater. 111 (2016) 262-272.
DOI URL |
[11] |
A. Markfeld, A. Rosen, Mater. Sci. Eng. 46 (2) (1980) 151-157.
DOI URL |
[12] |
C. Sun, S.L. Liu, R.D.K. Misra, Q. Li, D.H. Li, Mater. Sci. Eng. A 711 (2018) 484-491.
DOI URL |
[13] |
E.I. Galindo-Nava, W.M. Rainforth, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 117 (2016) 270-285.
DOI URL |
[14] |
H.-W. Yen, S.W. Ooi, M. Eizadjou, A. Breen, C.-Y. Huang, H.K.D.H. Bhadeshia, S.P. Ringer, Acta Mater. 82 (2015) 100-114.
DOI URL |
[15] |
U.K. Viswanathan, G.K. Dey, V. Sethumadhavan, Mater. Sci. Eng. A 398 (1-2) (2005) 367-372.
DOI URL |
[16] |
A.J. Knowles, P. Gong, K.M. Rahman, W.M. Rainforth, D. Dye, E.I. Galindo-Nava, Acta Mater. 174 (2019) 260-270.
DOI URL |
[17] |
H.J. Kong, T. Yang, R. Chen, S.Q. Yue, T.L. Zhang, B.X. Cao, C. Wang, W.H. Liu, J.H. Luan, Z.B. Jiao, B.W. Zhou, L.G. Meng, A. Wang, C.T. Liu, Scripta Mater. 186 (2020) 213-218.
DOI URL |
[18] | Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM International, 2008. |
[19] |
Z. Guo, W. Sha, E.A. Wilson, R.W. Grey, ISIJ Int. 43 (10) (2003) 1622-1629.
DOI URL |
[20] |
M.L.J.P.J. Othen, G.D.W. Smith, W.J. Phythian, Mag. Lett. 64 (1991) 383-391.
DOI URL |
[21] | Z. Nishiyama, Sci. Rep. Res. Inst. Tohoku Univ. 23 (1934) 638. |
[22] | G. Wassermann, Arch. Eisenhüttenwes 16 (1933) 647. |
[23] |
P. Jacques, Q. Furnémont, A. Mertens, F. Delannay, Philos. Mag. A 81 (7) (2001) 1789-1812.
DOI URL |
[24] |
A.P. Miodownik, N. Saunders, Mater. Sci. Technol. 18 (8) (2013) 861-868.
DOI URL |
[25] |
Y.U. Heo, Y.K. Kim, J.S. Kim, J.K. Kim, Acta Mater. 61 (2) (2013) 519-528.
DOI URL |
[26] |
Z.B. Jiao, J.H. Luan, Z.W. Zhang, M.K. Miller, W.B. Ma, C.T. Liu, Acta Mater. 61 (16) (2013) 5996-6005.
DOI URL |
[27] |
S.S. Xu, Y. Zhao, D. Chen, L.W. Sun, L. Chen, X. Tong, C.T. Liu, Z.W. Zhang, Int. J. Plasticity. 113 (2018) 99-110.
DOI URL |
[28] |
Z.M. Wang, H. Li, Q. Shen, W.Q. Liu, Z.Y. Wang, Acta Mater. 156 (2018) 158-171.
DOI URL |
[29] | L. Couturier, F. De Geuser, M. Descoins, A. Deschamps, Mater. Design 107 (2016) 416-425. |
[1] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[2] | D.P. Yang, P.J. Du, D. Wu, H.L. Yi. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process [J]. J. Mater. Sci. Technol., 2021, 75(0): 205-215. |
[3] | Z.H. Wang, B. Niu, Q. Wang, C. Dong, J.C. Jie, T.M. Wang, T.G. Nieh. Designing ultrastrong maraging stainless steels with improved uniform plastic strain via controlled precipitation of coherent nanoparticles [J]. J. Mater. Sci. Technol., 2021, 93(0): 60-70. |
[4] | Jialong Tian, M. Babar Shahzad, Wei Wang, Lichang Yin, Zhouhua Jiang, Ke Yang. Role of Co in formation of Ni-Ti clusters in maraging stainless steel [J]. J. Mater. Sci. Technol., 2018, 34(9): 1671-1675. |
[5] | Fayun Lu, Ping Yang, Li Meng, Fenge Cui, Hua Ding. Influences of Thermal Martensites and Grain Orientations on Strain-induced Martensites in High Manganese TRIP/TWIP Steels [J]. J Mater Sci Technol, 2011, 27(3): 257-265. |
[6] | Kai LIU, Yiyin SHAN, Zhiyong YANG, Jianxiong LIANG, Lun LU, Ke YANG. Effect of Aging on Microstructure and Mechanical Property of 1900 MPa Grade Maraging Stainless Steel [J]. J Mater Sci Technol, 2007, 23(03): 312-318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||