J. Mater. Sci. Technol. ›› 2022, Vol. 103: 1-7.DOI: 10.1016/j.jmst.2021.07.008
• Research Article • Next Articles
Yaling Wanga,e, Wei Zhub,c,d,*(), Yuan Dengb,c,*(
), Pengcheng Zhua, Yuedong Yua, Shaoxiong Hub, Ruifeng Zhanga
Received:
2021-03-16
Revised:
2021-07-02
Accepted:
2021-07-04
Published:
2022-03-20
Online:
2021-08-27
Contact:
Wei Zhu,Yuan Deng
About author:
dengyuan@buaa.edu.cn (Y. Deng).Yaling Wang, Wei Zhu, Yuan Deng, Pengcheng Zhu, Yuedong Yu, Shaoxiong Hu, Ruifeng Zhang. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer[J]. J. Mater. Sci. Technol., 2022, 103: 1-7.
Fig. 1. (a) Fabricating process of thermoelectric temperature sensing device through magnetron sputtering. (b) Fabrication process of porous microconed pressure sensor.
Fig. 2. XRD patterns of as-deposited thermoelectric thin films. (a) Bi2Te3, (b) Sb2Te3. The top-view and cross-sectional SEM images of the thermoelectric materials (c1, c2) Bi2Te3, (d1, d2) Sb2Te3. Temperature-dependent thermoelectric properties of the prepared thin films. (e) Bi2Te3, (f) Sb2Te3.
Fig. 3. Sensing characterization of TEG sensor. (a) Output voltages of the sensor in forward and reverse connections. (b) The output voltage of the device at the ΔT range from 0 to100 K. The insert exhibits magnified electric signal of the sensor to detect the ΔT of 0.1 K. (c) Linear sensitivity of the temperature sensor at different temperature gradients. The inset exhibits the image of testing setup. (d) The cold-side and hot-side temperature change of TEG based on flexible hydrogel heat sink. The inset exhibits the output voltage of our temperature sensor for calculating the temperature of hot cup and the thermal images of hot cup.
Fig. 5. Sensing property of the flexible porous mocroconed pressure sensor. (a) Relative voltage change of the device ((V0-V)/V0) versus applied pressure. (b) Response time of the pressure sensor with load of 500 Pa. (c) Frequency-dependent responses of flexible pressure sensor recorded from 0.2 Hz to 2 Hz. (d) The response curves of detecting a small pressure utilizing a grain of rice. (e) Voltage-current (V-I) curves with various applied pressures. (f) Stability test under a load of 500 Pa.
Fig. 6. Simultaneous sensing property of the temperature-pressure sensor. Output voltage signals of the bimodal sensors to (a) infrared laser, (b) empty cup, (c) warm cup at an ambient temperature of 29 °C.
Fig. 7. (a) Voltage change of the pressure sensing device under 500 Pa of loading-unloading cycles under different △T (1.5 K, 2.5 K and 5 K) across the thin-film TEG. (b) Voltage variations of TEG at various △T when different pressures are applied to the pressure sensor.
Fig. 8. The self-powered bimodal sensor as a health detector based on body heat energy. The response of detecting various human movement behaviors (a) palm, and (b) artery pulses.
[1] |
T. Liu, C. Zhu, W. Wu, K. Liao, X. Gong, Q. Sun, R.K.Y. Li, J. Mater. Sci. Technol. 45 (2020) 241-247.
DOI |
[2] |
J. Shi, L. Wang, Z. Dai, L. Zhao, M. Du, H. Li, Y. Fang, Small 14 (2018) 1800819.
DOI URL |
[3] |
Z. Liu, T. Zhao, H. Guan, T. Zhong, H. He, L. Xing, X. Xue, J. Mater. Sci. Technol. 35 (2019) 2187-2193.
DOI URL |
[4] |
Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu, J. Zhai, C. Pan, Z. Wang, Nat. Commun. 9 (2018) 244.
DOI URL |
[5] |
S.-H. Shin, W. Lee, S.-M. Kim, M. Lee, J.M. Koo, S.Y. Hwang, D.X. Oh, J. Park, Chem. Eng. J. 371 (2019) 452-460.
DOI URL |
[6] |
R. Wu, L. Ma, C. Hou, Z. Meng, W. Guo, W. Yu, R. Yu, F. Hu, X. Liu, Small 15 (2019) 1901558.
DOI URL |
[7] |
C. Wang, K. Xia, M. Zhang, M. Jian, Y. Zhang, ACS Appl. Mater. Interfaces 9 (2017) 39484-39492.
DOI URL |
[8] |
H. Liu, Z. Zhang, J. Ge, X. Lin, X. Ni, H. Yang, L. Yang, J. Mater. Sci. Technol. 35 (2019) 176-180.
DOI URL |
[9] |
W. Zhu, Y. Deng, L. Cao, Nano Energy 34 (2017) 463-471.
DOI URL |
[10] |
B. Lee, H. Cho, K.T. Park, J.S. Kim, M. Park, H. Kim, Y. Honget, S. Chun, Nat Commun 11 (2020) 5948.
DOI URL |
[11] |
J. Feng, W. Zhu, Z. Zhang, L. Cao, Y. Yu, Y. Deng, ACS Appl. Mater. Interfaces 12 (2020) 16630-16638.
DOI URL |
[12] |
Y. Yu, W. Zhu, Y. Wang, P. Zhu, K. Peng, Y. Deng, Appl. Energy 275 (2020) 115404.
DOI URL |
[13] |
R. Feng, F. Tang, N. Zhang, X. Wang, ACS Appl. Mater. Interfaces 11 (2019) 38616-38624.
DOI URL |
[14] |
D. Zhang, K. Zhang, Y. Wang, Y. Wang, Y. Yang, Nano Energy 56 (2019) 25-32.
DOI |
[15] |
X. Li, Y. Fan, H. Li, J. Cao, Y. Xiao, Y. Wang, F. Liang, H. Wang, Y. Jiang, Z. Wang, G. Zhu, ACS Nano 14 (2020) 9605-9612.
DOI URL |
[16] |
H. Ouyang, J. Tian, G. Sun, Y. Zou, Z. Liu, H. Li, L. Zhao, B. Shi, Y. Fan, Y. Fan, Z. Wang, Z. Li, Adv. Mater. 29 (2017) 1703456.
DOI URL |
[17] |
W. Chen, X. Yan, J. Mater. Sci. Technol. 43 (2020) 175-188.
DOI URL |
[18] |
M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang, Y. Zhang, Adv. Funct. Mater. 27 (2017) 1606066.
DOI URL |
[19] |
G. Ge, Y. Cai, Q. Dong, Y. Zhang, J. Shao, W. Huang, X. Dong, Nanoscale 10 (2018) 10033-10040.
DOI URL |
[20] | A. Santos, N. Pinela, P. Alves, Santos R, E. Fortunato, R. Martins, H. Águas, R. Igreja, Adv. Electron. Mater. 10 (2018) 1800182. |
[21] |
Y. Gao, C. Lu, G. Yu, J. Sha, J. Tan, F. Xuan, Nanotechnology 30 (2019) 325502.
DOI URL |
[22] |
M. Tan, W.D. Liu, X.L. Shi, J. Shang, H. Li, X. Liu, L. Kou, M. Dargusch, Y. Deng, Z.G. Chen, Nano Energy 78 (2020) 105379.
DOI URL |
[23] |
X.L. Shi, J. Zou, Z.G. Chen, Chem. Rev. 120 (2020) 7399-7515.
DOI URL |
[24] |
L. Zhang, X.L. Shi, Y.-L. Yang, Z.G. Chen., Mater. Today 46 (2021) 62-108.
DOI URL |
[25] |
X.L. Shi, W.Y. Chen, T. Zhang, J. Zou, Z.G. Chen, Energy Environ. Sci. 14 (2021) 729-764.
DOI URL |
[26] |
M. He, Y.J. Lin, C.-M. Chiu, W. Yang, B. Zhang, D. Yun, Y. Xie, Z.H. Lin, Nano Energy 49 (2018) 588-595.
DOI URL |
[27] |
M. Jung, K. Kim, B. Kim, H. Cheong, K. Shin, O.S. Kwon, J.J. Park, S. Jeon, ACS Appl. Mater. Interfaces 9 (2017) 26974-26982.
DOI URL |
[28] |
S. Cui, Y. Hu, Z. Huang, C. Ma, L. Yu, X. Hu, Int. J. Therm. Sci. 79 (2014) 276-282.
DOI URL |
[29] |
Y. Wei, S. Chen, Y. Lin, Z. Yang, L. Liu, J. Mater. Chem. C 3 (2015) 9594-9602.
DOI URL |
[30] |
L.W. Lo, H. Shi, H. Wan, Z. Xu, X. Tan, C. Wang, Adv. Mater. Technol. 5 (2019) 1900717.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||