J. Mater. Sci. Technol. ›› 2022, Vol. 96: 332-344.DOI: 10.1016/j.jmst.2021.05.025
• Research Article • Previous Articles
Mohan Reddy Pallavolu, Arghya Narayan Banerjee*(), Ramesh Reddy Nallapureddy, Sang W. Joo*(
)
Received:
2021-02-26
Revised:
2021-04-19
Accepted:
2021-05-13
Published:
2022-01-10
Online:
2022-01-05
Contact:
Arghya Narayan Banerjee,Sang W. Joo
About author:
swjoo@yu.ac.kr (S.W. Joo).Mohan Reddy Pallavolu, Arghya Narayan Banerjee, Ramesh Reddy Nallapureddy, Sang W. Joo. Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor[J]. J. Mater. Sci. Technol., 2022, 96: 332-344.
Fig. 3. FESEM images (at two different magnifications) of (a)/(b) M0, (c)/(d) M1, (e)/(f) M2, (g)/(h) M3, and (i)/(j) M4 hybrids prepared at different urea concentrations.
Fig. 6. (a) CV curves of all the hybrid electrodes (in a three-electrode system), (b) Specific capacitance values calculated from CV data for all the hybrid electrodes, (c) GCD curves for all the hybrid electrodes (in a three-electrode system), (d) Specific capacitance values calculated from GCD data for all the hybrid electrodes.
Fig. 7. (a) Cyclic stability of the M3 hybrid electrode at 10 A/g current density. Inset: charge-discharge curves at 1st and 5000th cycles. (b) Ragone plots of all the hybrid electrodes. (c) Nyquist plots for all the hybrid electrodes from high-to-low frequency region (in a three-electrode system). Upper inset: Magnified version of the high-frequency region for M3 electrode showing the Warburg curve. Lower inset: Magnified version of the high-frequency intercept for all the hybrid electrodes. (d) Nyquist plots of all the hybrid electrodes at high-to-mid frequency region. Inset: Equivalent circuit.
Fig. 8. (a) CV curves of M3 hybrid and AC electrodes recorded by a three-electrode cell in 2 M NaOH electrolyte at a scan rate of 100 mV/s. (b) CV curves of ASC with M3 hybrid as positive electrode and AC as negative electrode (in a two-electrode system) at various scan rates. (c) GCD plot of ASC (in a two-electrode system) at various current densities. (d) Specific capacitance of ASC device at different current densities calculated from GCD curves. (e) Cyclic stability of the asymmetric supercapacitor over 5000 charge-discharge cycles. Inset: Charge-discharge curves for the last 15 cycles. (f) Nyquist plot of ASC device. Upper inset: Magnified version of the high-frequency region of the Nyquist plot showing the Warburg curve and high-frequency intercept. Lower inset: Ragone plot of the ASC device.
Sample | Specific Capacitance (F/g) | Energy-Power performance | EIS data | |||||
---|---|---|---|---|---|---|---|---|
From CV @10 mV/s | From GCD @1 A/g | Energy density (Wh/kg) @23.4 × 103 W/kg | Energy density (Wh/kg) @23.4 × 102 W/kg | Rs (Ω) | Rct (Ω) | CPEDL (mF) | CF (mF) | |
M0 | 227.6 | 560.0 | 58.4 | 163.6 | 0.8 | 20.8 | 0.7 | 0.4 |
M1 | 241.2 | 577.8 | 45.4 | 168.8 | —- | —- | —- | —- |
M2 | 262.6 | 753.3 | 64.9 | 220.0 | —- | —- | —- | —- |
M3 | 395.2 | 1311.1 | 116.8 | 383.0 | 0.7 | 10.5 | 0.3 | 1.9 |
M4 | 314.3 | 882.2 | 64.9 | 257.7 | 0.9 | 14.8 | 0.4 | 0.9 |
Table 1 Various electrochemical data of the hybrid electrodes.
Sample | Specific Capacitance (F/g) | Energy-Power performance | EIS data | |||||
---|---|---|---|---|---|---|---|---|
From CV @10 mV/s | From GCD @1 A/g | Energy density (Wh/kg) @23.4 × 103 W/kg | Energy density (Wh/kg) @23.4 × 102 W/kg | Rs (Ω) | Rct (Ω) | CPEDL (mF) | CF (mF) | |
M0 | 227.6 | 560.0 | 58.4 | 163.6 | 0.8 | 20.8 | 0.7 | 0.4 |
M1 | 241.2 | 577.8 | 45.4 | 168.8 | —- | —- | —- | —- |
M2 | 262.6 | 753.3 | 64.9 | 220.0 | —- | —- | —- | —- |
M3 | 395.2 | 1311.1 | 116.8 | 383.0 | 0.7 | 10.5 | 0.3 | 1.9 |
M4 | 314.3 | 882.2 | 64.9 | 257.7 | 0.9 | 14.8 | 0.4 | 0.9 |
[1] | Electrochemical Supercapacitors for Energy Storage and Delivery : Fundamentals and Applications, CRC Press, 2017. |
[2] |
S. Goswami, G.R. Dillip, S. Nandy, A.N. Banerjee, A. Pimentel, S.W. Joo, R. Martins, E. Fortunato, Electrochim. Acta 316 (2019) 202-218.
DOI URL |
[3] |
A.N. Banerjee, V.C. Anitha, S.W. Joo, Sci. Rep. 7 (2017) 13227.
DOI URL PMID |
[4] |
W. Raza, F. Ali, N. Raza, Y. Luo, K.-.H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Nano Energy 52 (2018) 441-473.
DOI URL |
[5] |
G.R. Dillip, A.N. Banerjee, V.C. Anitha, B. Deva Prasad Raju, S.W. Joo, B.K. Min, ACS Appl. Mater. Interfaces 8 (2016) 5025-5039.
DOI URL |
[6] |
B.E. Conway, W.G. Pell, J. Solid State Electrochem. 7 (2003) 637-644.
DOI URL |
[7] |
L. Li, Z. Wu, S. Yuan, X.-.B. Zhang, Energy Environ.Sci. 7 (2014) 2101-2122.
DOI URL |
[8] |
Y. Jiang, J. Liu, Energy Environ. Mater. 2 (2019) 30-37.
DOI URL |
[9] |
D. Majumdar, T. Maiyalagan, Z. Jiang, ChemElectroChem 6 (2019) 4343-4372.
DOI URL |
[10] |
C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei, J. Lau, B. Dunn, Nat. Rev. Mater. 5 (2020) 5-19.
DOI URL |
[11] |
S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D. Jiang, V. Presser, V. Augustyn, Chem. Rev. 120 (2020) 6738-6782.
DOI URL PMID |
[12] |
J. Zhu, B. Huang, C. Zhao, H. Xu, S. Wang, Y. Chen, L. Xie, L. Chen, Electrochim. Acta 313 (2019) 194-204.
DOI URL |
[13] |
B. Huang, W. Wang, T. Pu, J. Li, C. Zhao, L. Xie, L. Chen, Chem. Eng. J. 375 (2019) 121969.
DOI URL |
[14] | B. Huang, H. Wang, S. Liang, H. Qin, Y. Li, Z. Luo, C. Zhao, L. Xie, L. Chen, Energy Storage Mater 32 (2020) 105-114. |
[15] |
J. Zhu, D. Song, T. Pu, J. Li, B. Huang, W. Wang, C. Zhao, L. Xie, L. Chen, Chem. Eng. J. 336 (2018) 679-689.
DOI URL |
[16] |
H.R. Barai, A.N. Banerjee, S.W. Joo, J. Ind. Eng. Chem. 56 (2017) 212-224.
DOI URL |
[17] |
N. Maheswari, G. Muralidharan, Appl. Surf. Sci. 416 (2017) 461-469.
DOI URL |
[18] |
A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, Renew. Sust. Energ. Rev. 101 (2019) 123-145.
DOI URL |
[19] |
M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi, L. Chaney, A.T. Lech, R.B. Kaner, PNAS 112 (2015) 4233-4238.
DOI URL PMID |
[20] | A. Vlad, N. Singh, J. Rolland, S. Melinte, P.M. Ajayan, J.-F. Gohy, Sci.Rep. 4 (2014) 4315. |
[21] | S. Roldán, O. Bondarchuk, J. Carretero-González, T. Rojo, R. Mysyk, Meet. Abstr.MA 2015-01 (2015) 2260. |
[22] | S. Baskar, M. Minakshi, R. Kalai Selvan, D. Meyrick, Int. J. Electrochem. Sci. 10 (2014) 185. |
[23] |
L.-.Q. Mai, F. Yang, Y.-.L. Zhao, X. Xu, L. Xu, Y.-.Z. Luo, Nature Commun 2 (2011) 381.
DOI URL |
[24] |
S. Jayasubramaniyan, S. Balasundari, P.A. Rayjada, N. Satyanarayana, P. Muralid- haran, RSC Adv. 8 (2018) 22559-22568.
DOI URL |
[25] |
Y. Tang, S. Chen, T. Chen, W. Guo, Y. Li, S. Mu, S. Yu, Y. Zhao, F. Wen, F. Gao, J. Mater. Chem. A 5 (2017) 3923-3931.
DOI URL |
[26] |
S. Devaraj, H.Y. Liu, P. Balaya, J. Mater. Chem. A 2 (2014) 4276-4281.
DOI URL |
[27] |
N. Zhang, J. Ma, Q. Li, J. Li, D.H.L. Ng, RSC Adv 5 (2015) 81981-81985.
DOI URL |
[28] |
L. Zhang, H. Gong, J. Mater. Chem. A 3 (2015) 7607-7615.
DOI URL |
[29] |
C. Wang, J. Xu, M.-.F. Yuen, J. Zhang, Y. Li, X. Chen, W. Zhang, Adv. Funct. Mater. 24 (2014) 6372-6380.
DOI URL |
[30] |
Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Adv. Funct. Mater. 21 (2011) 2366-2375.
DOI URL |
[31] |
Y. Mi, Z. Huang, Z. Zhou, F. Hu, Q. Meng, , J. Phys.: Conf. Ser. 188 (2009) 012056.
DOI URL |
[32] |
A. Clearfield, A. Moini, P.R. Rudolf, Inorg. Chem. 24 (1985) 4606-4609.
DOI URL |
[33] | C.H. Bamford, M.J.S. Dewar, J. Chem. Soc. (1949) 2877-2882. |
[34] | P.G. Blake, G.E. Jackson, J. Chem. Soc. B (1968) 1153-1155. |
[35] |
S.H. Lee, Y. Kwon, S. Park, M. Cho, Y. Lee, J Mater Sci 50 (2015) 5952-5959.
DOI URL |
[36] |
J. Kim, J.S. Kim, H. Baik, K. Kang, K. Lee, RSC Adv. 6 (2016) 26535-26539.
DOI URL |
[37] | H.H. Peng, H.L. Zhang, Int. J. Electrochem. Sci. 12 (2017) 5898-5909. |
[38] |
S. Lei, Z. Liang, L. Zhou, K. Tang, Mater. Chem. Phys. 113 (2009) 445-450.
DOI URL |
[39] |
L. Liu, X. Zhang, R. Wang, J. Liu, Superlattices Microstruct 72 (2014) 219-229.
DOI URL |
[40] | E.M. Nour, S.M. Teleb, N.A. AL-Khsosy, M.S. Refat, Synth. React. Inorganic Met.-Org. Chem. 27 (1997) 505-508. |
[41] |
C. Zhang, D. Wu, L. Shi, Y. Zhu, D. Xiong, S. Xu, R. Huang, R. Qi, W. Zhang, L. Wang, P.K. Chu, R. Soc. Open Sci. 4 (2021) 171229 (n.d.).
DOI URL |
[42] |
S. Wu, C. Liu, D.A. Dinh, K.S. Hui, K.N. Hui, J.M. Yun, K.H. Kim, ACS Sustain. Chem. Eng. 7 (2019) 9763-9770.
DOI URL |
[43] |
C. Zhao, H. Li, J. Jiang, Y. He, W. Liang, High Pressure Res 38 (2018) 212-223.
DOI URL |
[44] |
G.B. Sukhorukov, D.G. Shchukin, W.-.F. Dong, H. Möhwald, V.V. Lulevich, O.I. Vinogradova, Macromol. Chem. Phys. 205 (2004) 530-535.
DOI URL |
[45] |
J. Liu, R. Caracas, D. Fan, E. Bobocioiu, D. Zhang, W.L. Mao, Am. Miner. 101 (2016) 2723-2730.
DOI URL |
[46] |
E. Boulard, A.F. Goncharov, M. Blanchard, W.L. Mao, J. Geophys. Res.: Solid Earth 120 (2015) 4069-4079.
DOI URL |
[47] |
N. Bayal, B. Singh, R. Singh, V. Polshettiwar, Sci. Rep. 6 (2016) 24888.
DOI URL |
[48] |
T.V.M. Sreekanth, P.C. Nagajyothi, G.R. Reddy, J. Shim, K. Yoo, Sci. Rep. 9 (2019) 14477.
DOI URL |
[49] | O. Sheikhnejad, Z. Feng, A. Rajabtabar, E. Khodadad, A. Mostofizadeh, Y. Huang, Int. J. Electrochem. Sci. 9 (2014) 4230-4240. |
[50] |
J. Yesuraj, V. Elumalai, M. Bhagavathiachari, A.S. Samuel, E. Elaiyappillai, P.M. Johnson, J. Electroanal. Chem. 797 (2017) 78-88.
DOI URL |
[51] |
G. Harichandran, S. Radha, P. Divya, J. Yesuraj, J Mater Sci: Mater Electron 31 (2020) 1646-1653.
DOI URL |
[52] | P. Wongkrua, T. Thongtem, S. Thongtem, J. Nanomater. 2013 (2013) e702679. |
[53] |
L. Wang, L. Yue, X. Zang, H. Zhu, X. Hao, Z. Leng, X. Liu, S. Chen, CrystEngComm 18 (2016) 9286-9291.
DOI URL |
[54] |
D. Ghosh, S. Giri, M. Moniruzzaman, T. Basu, M. Mandal, C.K. Das, Dalton Trans 43 (2014) 11067-11076.
DOI URL |
[55] |
S. Muralikrishna Udayabhanu, B. Kishore, H. Nagabhushana, D. Suresh, S.C. Sharma, G. Nagaraju, New J. Chem. 41 (2017) 12854-12865.
DOI URL |
[56] | T. G. Cardenas, E. J. Acuña, Boletín de La Sociedad Chilena de Química 45 (2000) 499-507. |
[57] |
H. Chen, Y. Xia, H. Huang, Y. Gan, X. Tao, C. Liang, J. Luo, R. Fang, J. Zhang, W. Zhang, X. Liu, Chem. Eng. J. 330 (2017) 1195-1202.
DOI URL |
[58] |
B. Saravanakumar, S.P. Ramachandran, G. Ravi, V. Ganesh, A. Sakunthala, R. Yuvakkumar, Appl. Phys. A 125 (2018) 6.
DOI URL |
[59] |
J. Jia, P. Zhang, Ozone: Sci. Eng. 40 (2018) 21-28.
DOI URL |
[60] |
Q.X. Xia, K.S. Hui, K.N. Hui, S.D. Kim, J.H. Lim, S.Y. Choi, L.J. Zhang, R.S. Mane, J.M. Yun, K.H. Kim, J. Mater. Chem. A 3 (2015) 22102-22117.
DOI URL |
[61] |
D. Ghosh, S. Giri, S. Dhibar, C.K. Das, Electrochim. Acta 147 (2014) 557-564.
DOI URL |
[62] |
D. Liu, S.H. Hur, J.S. Chung, W.M. Choi, Appl. Sci. 10 (2020) 7927.
DOI URL |
[1] | Kunsik An, Jaehoon Kim, Mohammad Afsar Uddin, Seunghyun Rhee, Hyeok Kim, Kyung-Tae Kang, Han Young Woo, Changhee Lee. Germinant ZnO nanorods as a charge-selective layer in organic solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 89-94. |
[2] | Wang Jian, Cui Lanyue, Ren Yande, Zou Yuhong, Ma Jinlong, Wang Chengjian, Zheng Zhongyin, Chen Xiaobo, Zeng Rongchang, Zheng Yufeng. In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 47(0): 52-67. |
[3] | Zhu Yanan,Zheng Ganhong,Dai Zhenxiang,Zhang Lingyun,Ma Yongqing. Photocatalytic and Luminescent Properties of SrMoO4 Phosphors Prepared via Hydrothermal Method with Different Stirring Speeds [J]. J. Mater. Sci. Technol., 2017, 33(1): 23-29. |
[4] | Sanjeev K. Sharma, Deuk Young Kim. Microstructure and Optical Properties of Yttrium-doped Zinc Oxide (YZO) Nanobolts Synthesized by Hydrothermal Method [J]. J. Mater. Sci. Technol., 2016, 32(1): 12-16. |
[5] | Tuoquan Liao, Wei Wang, Yongli Song, Xianjie Wang, Yanqiang Yang, Xiaoyang Liu. HMTA-assisted One-pot Synthesis of Greigite Nano-platelet and Its Magnetic Properties [J]. J. Mater. Sci. Technol., 2015, 31(9): 895-900. |
[6] | Shanyi Guang, Fuyou Ke, Yuhua Shen. Controlled Preparation and Formation Mechanism of Hydroxyapatite Nanoparticles under Different Hydrothermal Conditions [J]. J. Mater. Sci. Technol., 2015, 31(8): 852-856. |
[7] | Pengjun Zhao, Lei Wang, Liang Bian, Jinbao Xu, Aimin Chang, Xinqian Xiong, Fanglong Xu, Jiaqi Zhang. Growth Mechanism, Modified Morphology and Optical Properties of Coral-like BaTiO3 Architecture through CTAB Assisted Synthesis [J]. J. Mater. Sci. Technol., 2015, 31(2): 223-228. |
[8] | Somnath Middya, Animesh Layek, Arka Dey, Partha Pratim Ray. Synthesis of Nanocrystalline FeS2 with Increased Band Gap for Solar Energy Harvesting [J]. J. Mater. Sci. Technol., 2014, 30(8): 770-775. |
[9] | Fei Shi, Jingxiao Liu, Xiaoli Dong, Qiang Xu, Jiayu Luo, Hongchao Ma. Hydrothermal Synthesis of CsxWO3 and the Effects of N2 Annealing on its Microstructure and Heat Shielding Properties [J]. J. Mater. Sci. Technol., 2014, 30(4): 342-346. |
[10] | Carminna Ottone, Vivian Farí, as Rivera, Marco Fontana, Katarzyna Bejtka, Barbara Onida, Valentina Cauda. Ultralong and Mesoporous ZnO and γ-Al2O3 Oriented Nanowires Obtained by Template-assisted Hydrothermal Approach [J]. J. Mater. Sci. Technol., 2014, 30(12): 1167-1173. |
[11] | Minjiang Gao, Yuxiang Li, Min Guo, Mei Zhang, Xidong Wang. Effect of Substrate Pretreatment on Controllable Growth of TiO2 Nanorod Arrays [J]. J Mater Sci Technol, 2012, 28(7): 577-586. |
[12] | Jiezi Hu,Jian Xie,Xinbing Zhao,Hongming Yu,Xin Zhou,Gaoshao Cao,Jiangping Tu. Doping Effects on Electronic Conductivity and Electrochemical Performance of LiFePO4 [J]. J Mater Sci Technol, 2009, 25(03): 405-409. |
[13] | Xiaoyan TU, Guanglie LU, Yuewu ZENG. Improved Electrochemical Performance of Orthorhombic LiMn1-xCrxO2 Synthesized by Hydrothermal Method [J]. J Mater Sci Technol, 2006, 22(01): 45-49. |
[14] | Xiaoyan TU, Guanglie LU, Yuewu ZENG, Zhiqing YUAN, Xiurong HU. Hydrothermal Synthesis and Electrochemical Behavior of Nanosized Orthorhombic LiMnO2 [J]. J Mater Sci Technol, 2005, 21(04): 552-554. |
[15] | Hongxing LIU, Hong DENG, Yan LI, Yanrong LI. Microwave Hydrothermal Synthesis PZT of Nanometer Crystal [J]. J Mater Sci Technol, 2004, 20(05): 637-638. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||