J. Mater. Sci. Technol. ›› 2021, Vol. 92: 159-170.DOI: 10.1016/j.jmst.2021.02.056
• Research Article • Previous Articles Next Articles
Minglu Lia, Chaozhu Shua,*(), Anjun Hub, Yu Yana, Miao Hea, Jianping Longa,*(
)
Received:
2020-11-23
Revised:
2021-02-06
Accepted:
2021-02-19
Published:
2021-11-30
Online:
2021-05-07
Contact:
Chaozhu Shu,Jianping Long
About author:
longjianping@cdut.cn (J. Long).Minglu Li, Chaozhu Shu, Anjun Hu, Yu Yan, Miao He, Jianping Long. Active site synergy of the mixed-phase cobalt diselenides with slight lattice distortion for highly reversible and stable lithium oxygen batteries[J]. J. Mater. Sci. Technol., 2021, 92: 159-170.
Fig. 2. Surface morphology characterization of c-CoSe2/o-CoSe2. (a) TEM image; (b, c) HRTEM image; (d) SAED pattern and (e) EDS elemental mapping of c-CoSe2/o-CoSe2.
Fig. 3. Characterization of composition and structure. (a) Co 2p and (b) Se 3d high-resolution XPS spectra of c-CoSe2/o-CoSe2 and c-CoSe2. (c) Raman spectra and (d) UPS spectra of c-CoSe2/o-CoSe2, o-CoSe2 and c-CoSe2. N2 adsorption and desorption isotherms and pore size distribution (inset) of (e) c-CoSe2/o-CoSe2 and (f) c-CoSe2.
Fig. 4. (a) Schematic structure model of c-CoSe2 (100), o-CoSe2 (101) and [c-CoSe2 (100)||o-CoSe2 (101)] interface. (b) Comparison of PDOS and (c) schematic rigid band diagrams of c-CoSe2, and c-CoSe2/o-CoSe2 interfaces.
Fig. 5. Electrochemical performance. (a) The first discharge-charge curves of LOBs based on different electrodes in a voltage window of 2.0-4.5 V with a current density of 500 mA g -1. Rate performance of LOBs with (b) c-CoSe2/o-CoSe2, (c) o-CoSe2 and (d) c-CoSe2 oxygen electrodes at different current densities. (e) Cycling performance of LOBs at 500 mA g -1 with the cut-off capacity of 2000 mA h g -1.
Fig. 6. Morphological characterization of electrodes at different stages. SEM images of (a-c) c-CoSe2/o-CoSe2 oxygen electrodes; (d-f) c-CoSe2 oxygen electrodes and (h-j) o-CoSe2 oxygen electrodes at (a, d, g) pristine stage; (b, e, f) discharged stage and (c, f, i) charged stage.
Fig. 7. (a, b) Raman spectra, (c, d) Li 1 s and (e, f) C 1 s XPS spectra after discharged/charged for (a, c, e) c-CoSe2/o-CoSe2 electrodes and (b, d, f) c-CoSe2 electrodes.
Fig. 8. (a) UV-Vis spectra (inset is the digital image of TiOSO4 solutions immersed with electrodes at different discharge capacities); (b) Lambert-Beer plot for c-CoSe2/o-CoSe2 oxygen electrode.
Fig. 9. Calculated free energy diagrams for the discharge-charge reactions on (a) c-CoSe2, and (b) c-CoSe2/o-CoSe2. (c) Comparison of charge density distribution on pristine c-CoSe2 surface and lattice distortion c-CoSe2/o-CoSe2 surface. Blue, yellow, red and purple balls represent Co atoms, Se atoms, O atoms and Li atoms in c-CoSe2, respectively. Blue, green, yellow and red represent Co atoms, Se atoms, O atoms and Li atoms in c-CoSe2/o-CoSe2. (d) The mechanism diagram of the reversible formation of Li2O2 on the c-CoSe2/o-CoSe2 oxygen electrode.
[1] | Q. Zhao, N. Katyal, I.D. Seymour, G. Henkelman, T. Ma, Angew. Chem. 131 (2019) 12683-12687. |
[2] | X. Li, J. Wang, InfoMat 2 (2020) 3-32. |
[3] | Y.R. Liang, C.Z. Zhao, H. Yuan, Y. Chen, W.C. Zhang, J.Q. Huang, D.S. Yu, Y.L. Liu, M.M. Titirici, Y.L. Chueh, H.J. Yu, Q. Zhang, InfoMat 1 (2019) 6-32. |
[4] | Z. Hou, C. Shu, P. Hei, T. Yang, R. Zheng, Z. Ran, J. Long, Nanoscale 12 (2020) 6785-6794. |
[5] | J.J. Xu, Z.L. Wang, D. Xu, L.L. Zhang, X.B. Zhang, Nat. Commun. 4 (2013) 1-10. |
[6] | D. Chen, H.T. Tan, X.H. Rui, Q. Zhang, Y.Z. Feng, H.B. Geng, C.C. Li, S.M. Huang, Y. Yu, InfoMat 1 (2019) 251-259. |
[7] | J. Liu, Y. Ji, J. Nai, X. Niu, Y. Luo, L. Guo, S. Yang, Energy Environ. Sci. 11 (2018) 1736-1741. |
[8] | G. Chen, Y. Zhu, H.M. Chen, Z. Hu, S.F. Hung, N. Ma, J. Dai, H.J. Lin, C.T. Chen, W. Zhou, Adv. Mater. 31 (2019) 1900883. |
[9] | Y.F. Zhao, J.C. Guo, InfoMat 2 (2020) 866-878. |
[10] | Q. Xiong, Y. Wang, P.F. Liu, L.R. Zheng, G. Wang, H.G. Yang, P.K. Wong, H. Zhang, H. Zhao, Adv. Mater. 30 (2018) 1801450. |
[11] | H. Liu, Q. He, H. Jiang, Y. Lin, Y. Zhang, M. Habib, S. Chen, L. Song, ACS Nano 11 (2017) 11574-11583. |
[12] | X. Xu, F. Song, X. Hu, Nat. Commun. 7 (2016) 1-7. |
[13] | Y. Liu, C. Xiao, M. Lyu, Y. Lin, W. Cai, P. Huang, W. Tong, Y. Zou, Y. Xie, Angew. Chem. Int. Edit. 54 (2015) 11231-11235. |
[14] | Y. Jia, K. Jiang, H. Wang, X. Yao, Chemistry (Easton) 5 (2019) 1371-1397. |
[15] | Y.S. Zhou, F.L. Che, M. Liu, C.Q. Zou, Z.Q. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie, Nat. Chem. 10 (2018) 974-980. |
[16] | Y. Shi, Y. Zhou, D.R. Yang, W.X. Xu, C. Wang, F.B. Wang, J.J. Xu, X.H. Xia, H.Y. Chen, J. Am. Chem. Soc. 139 (2017) 15479-15485. |
[17] | D.W. Wang, Q. Li, C. Han, Q.Q. Lu, Z.C. Xing, X. Yang, Nat. Commun. 10 (2019) 1-12. |
[18] | H.J. Lee, S. Back, J.H. Lee, S.H. Choi, Y. Jung, J.W. Choi, ACS Catal 9 (2019) 7099-7108. |
[19] | Y.Q. Sun, K. Xu, Z.X. Wei, H.L. Li, T. Zhang, X. Li, W. Cai, J. Ma, H.J. Fan, Y. Li, Adv. Mater. 30 (2018) 1802121. |
[20] | K. Zhang, G. Zhang, J.H. Qu, H.J. Liu, Small 16 (2020) 1907001. |
[21] | R.X. Liang, C.Z. Shu, A.J. Hu, M.L. Li, Z.Q. Ran, R.X. Zheng, J.P. Long, Chem. Eng. J. 393 (2020) 124592. |
[22] | X.L. Zhang, S.J. Hu, Y.R. Zheng, R. Wu, F.Y. Gao, P.P. Yang, Z.Z. Niu, C. Gu, X. Yu, X.S. Zheng, Nat. Commun. 10 (2019) 1-9. |
[23] | S.J. Deng, F. Yang, Q.H. Zhang, Y. Zhong, Y.X. Zeng, S. Lin, X. Wang, X. Lu, C.Z. Wang, L. Gu, Adv. Mater. 30 (2018) 1802223. |
[24] | M.L. Li, C.Z. Shu, A.J. Hu, J.B. Li, R.X. Liang, J.P. Long, ACS Sustain. Chem. Eng. 8 (2020) 5018-5027. |
[25] | Y.H. Gui, X. Liu, Y.H. Dou, L. Zhang, M. Al-Mamun, L.X. Jiang, H.J. Yin, C.T. Hec, H.J. Zhao, Nano Energy 57 (2019) 371-378. |
[26] | T.F. Zhou, Y. Zheng, H. Gao, S.D. Min, S. Li, H.K. Liu, Z. Guo, Adv. Sci. 2 (2015) 1500027. |
[27] | C.S. Yan, Y. Zhu, Y.T. Li, Z.W. Fang, L.L. Peng, X. Zhou, G. Chen, G. Yu, Adv. Funct. Mater. 28 (2018) 1705951. |
[28] | P.Z. Chen, Y. Tong, C.Z. Wu, Y. Xie, Acc. Chem. Res. 51 (2018) 2857-2866. |
[29] | A.J. Hu, W.Q. Lv, T.Y. Lei, W. Chen, Y. Hu, C.Z. Shu, X. Wang, L. Xue, J. Huang, X. Du, ACS Nano 14 (2020) 3490-3499. |
[30] | Y.D. Zheng, P. Wu, M.H. Gao, X.L. Zhang, F.Y. Gao, H.X. Ju, R. Wu, Q. Gao, R. You, W.X. Huang, Nat. Commun. 9 (2018) 2533. |
[31] | J.B. Li, C.Z. Shu, A.J. Hu, Z.Q. Ran, M.L. Li, R.X. Zheng, J.P. Long, Chem. Eng. J. 381 (2020) 122678. |
[32] | B. You, L. Wang, N. Li, C.L. Zheng, ChemElectroChem 1 (2014) 772-778. |
[33] | B. You, J. Yang, Y.Q. Sun, Q.D. Su, Chem. Commun. 47 (2011) 12364-12366. |
[34] | H.J. Han, X.W. Guo, Y. Ito, P. Liu, D. Hojo, T. Aida, A. Hirata, T. Fujita, T. Adschiri, H. Zhou, Adv. Energy Mater. 6 (2016) 1501870. |
[35] | P. Zhang, S.F. Zhang, M. He, J.W. Lang, A. Ren, S. Xu, X. Yan, Adv. Sci. 4 (2017) 1700172. |
[36] | X.Y. Yang, J.J. Xu, Z.W. Chang, D. Bao, Y.B. Yin, T. Liu, J.M. Yan, D.P. Liu, Y. Zhang, X.B. Zhang, Adv. Energy Mater. 8 (2018) 1702242. |
[37] | C.Z. Shu, C. Wu, J.P. Long, H.P. Guo, S.X. Dou, J. Wang, Nano Energy 57 (2019) 166-175. |
[38] | K.R. Yoon, K.Y. Shin, J. Park, S.H. Cho, C. Kim, J.W. Jung, J.Y. Cheong, H.R. Byon, H.M. Lee, I.D. Kim, ACS Nano 12 (2018) 128-139. |
[39] | X.W. Mu, A.H. Wen, G. Ou, Y. Du, P. He, M. Zhong, H. Zhu, H. Wu, S. Yang, Y. Liu, Nano Energy 51 (2018) 83-90. |
[40] | P. Wang, C.X. Li, S.H. Dong, X.L. Ge, P. Zhang, X. Miao, R. Wang, Z. Zhang, L. Yin, Adv. Energy Mater. 26 (2019) 1900788. |
[41] | A.J. Hu, M.J. Zhou, T.Y. Lei, Y. Hu, X.C. Du, C.H. Gong, C.Z. Shu, J.P. Long, J. Zhu, W. Chen, X.F. Wang, J. Xiong, Adv. Energy Mater. 10 (2020) 2002180. |
[42] | D. Aurbach, B.D. McCloskey, L.F. Nazar, P.G. Bruce, Nat. Energy 1 (2016) 1-11. |
[43] | J.Q. Huang, B. Zhao, Z.W. Bai, R.Q. Guo, Z.L. Xu, Z. Sadighi, L. Qin, T.Y. Zhang, G.H. Chen, B.L. Huang, J.K. Kim, Adv. Funct. Mater. 26 (2016) 8290-8299. |
[44] | C.Z. Yang, R.A. Wong, M. Hong, K. Yamanaka, T.K. Ohta, H.R. Byon, Nano Lett 16 (2016) 2969-2974. |
[45] | A.J. Hu, J.P. Long, C.Z. Shu, C.X. Xu, T.S. Yang, R.X. Liang, J.B. Li, Electrochim. Acta 301 (2019) 69-79. |
[46] | J.W. Zhou, Y. Liu, S.L. Zhang, T.F. Zhou, Z.P. Guo, InfoMat 2 (2020) 437-465. |
[1] | Zhen Li, Zhang-Zhi Shi, Hai-Jun Zhang, Hua-Fang Li, Yun Feng, Lu-Ning Wang. Hierarchical microstructure and two-stage corrosion behavior of a high-performance near-eutectic Zn-Li alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 50-65. |
[2] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[3] | Shijun Zhao. Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure [J]. J. Mater. Sci. Technol., 2020, 44(0): 133-139. |
[4] | Yiping Lu, Zhongyi Tang, Bin Wen, Gang Wang, Shiwei Wu, Tongmin Wang, Yubo Zhang, Zongning Chen, Zhiqiang Cao, Tingju Li. A promising new class of plasticine: Metallic plasticine [J]. J. Mater. Sci. Technol., 2018, 34(2): 344-348. |
[5] | Yaping ZONG, Liang ZUO. Materials Design of Microstructure in Grain Boundary and Second Phase Particles [J]. J Mater Sci Technol, 2003, 19(02): 97-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||