J. Mater. Sci. Technol. ›› 2021, Vol. 91: 78-89.DOI: 10.1016/j.jmst.2021.01.096
• Research Article • Previous Articles Next Articles
Abbas Mohammadia,*(), Nariman A. Enikeevb,c, Maxim Yu. Murashkinb,c, Makoto Aritad, Kaveh Edalatia,*(
)
Received:
2021-01-02
Revised:
2021-01-26
Accepted:
2021-01-29
Published:
2021-11-20
Online:
2021-11-20
Contact:
Abbas Mohammadi,Kaveh Edalati
About author:
kaveh.edalati@kyudai.jp(K. Edalati).Abbas Mohammadi, Nariman A. Enikeev, Maxim Yu. Murashkin, Makoto Arita, Kaveh Edalati. Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation[J]. J. Mater. Sci. Technol., 2021, 91: 78-89.
Material | Process | dav (nm) | σ or HV/3 (MPa) | DDis (m-2) | Refs. |
---|---|---|---|---|---|
Al (99.9999%) | HPT | 20000 | 53 | [ | |
Al (99.999%) | HPT | 4800 | 89 | [ | |
Al (99.999%) | ECAP | 15000 | 72 | [ | |
Al (99.999%) | ECAP | 1300 | 115 | [ | |
Al (99.99%) | HPT | 1300 | 110 | [ | |
Al (99.99%) | ECAP | 1300 | 135 | [ | |
Al (99.99%) | ECAP | 2000 | 98 | [ | |
Al (99.99%) | ECAP | 1000 | 120 | 1.8×1014 | [ |
Al (99.99%) | ARB | 1100 | 97 | 1.2×1013 | [ |
Al (99.99%) | ARB | 690 | 120 | 1.2×1013 | [ |
Al (99.99%) | ARB | 690 | 97 | 1.23×1013 | [ |
A1050 | ARB | 600 | 260 | 1.33×1014 | [ |
A1050 | HPT | 500 | 177 | 2-4×1014 | [ |
A1050 | HPT | 600 | 173 | [ | |
A1100 | HPT | 400 | 285 | [ | |
A1100 | ECAP | 680 | 185 | [ | |
A1100 | ARB | 330 | 290 | [ | |
A1100 | ARB | 280 | 310 | 1.3×1014 | [ |
A1100 | ARB | 260 | 302 | 2.2×1014 | [ |
A2024 | ARB | 350 | 425 | 1.0×1015 | [ |
A2024 | ECAP | 300 | 325 | [ | |
A3004 | ECAP | 290 | 370 | [ | |
A5083 | ECAP | 225 | 420 | [ | |
A6060 | HPT | 180 | 525 | [ | |
A6061 | ECAP | 400 | 380 | [ | |
A6061 | ECAP | 290 | 280 | [ | |
A6061 | ECAP | 280 | 327 | [ | |
A6061 | HPT | 200 | 510 | 2.6×1014 | [ |
A6061 | ARB | 240 | 370 | [ | |
A6061 | ARB | 310 | 363 | [ | |
A6063 | ECAP | 500 | 255 | [ | |
A7075 | ECAP | 210 | 480 | [ | |
A8011 | ARB | 700 | 180 | [ | |
Al-1.1Mg (at%) | HPT | 390 | 415 | [ | |
Al-3.3Mg (at%) | HPT | 200 | 600 | [ | |
Al-5.5Mg (at%) | HPT | 190 | 660 | [ | |
Al-8.8Mg (at%) | HPT | 140 | 735 | [ | |
Al-1.3Ag (at%) | HPT | 500 | 200 | [ | |
Al-3.0Ag (at%) | HPT | 367 | 245 | [ | |
Al-5.9Ag (at%) | HPT | 278 | 370 | [ | |
Al-1.7Cu (at%) | HPT | 207 | 670 | [ | |
Al-2Fe (wt%) | HPT | 300 | 440 | < 1.1×1015 | [ |
Al-2Fe (wt%) | HPT | 150 | 590 | < 2.6×1015 | [ |
Al-2Fe (wt%) | HPT | 140 | 655 | < 3.3×1015 | [ |
Al-0.2Zr (wt%) | ECAP | 630 | 160 | [ | |
Al-3Mg (wt%) | ECAP | 200 | 390 | 2.7×1015 | [ |
Al-3Mg (wt%) | HPT | 150 | 655 | [ | |
Al-1.6Fe-1Cu (wt%) | ECAP | 370 | 190 | 3.22×1014 | [ |
Al-3Cu-1Li (wt%) | HPT | 130 | 700 | 2.78×1015 | [ |
Table 1 Average grain size (dav), yield strength (σ) or one third of Vickers hardness (HV/3) and dislocation density (DDis) reported in literature [20,33,[40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64]] for pure aluminum and Al-based alloys after processing by different SPD methods.
Material | Process | dav (nm) | σ or HV/3 (MPa) | DDis (m-2) | Refs. |
---|---|---|---|---|---|
Al (99.9999%) | HPT | 20000 | 53 | [ | |
Al (99.999%) | HPT | 4800 | 89 | [ | |
Al (99.999%) | ECAP | 15000 | 72 | [ | |
Al (99.999%) | ECAP | 1300 | 115 | [ | |
Al (99.99%) | HPT | 1300 | 110 | [ | |
Al (99.99%) | ECAP | 1300 | 135 | [ | |
Al (99.99%) | ECAP | 2000 | 98 | [ | |
Al (99.99%) | ECAP | 1000 | 120 | 1.8×1014 | [ |
Al (99.99%) | ARB | 1100 | 97 | 1.2×1013 | [ |
Al (99.99%) | ARB | 690 | 120 | 1.2×1013 | [ |
Al (99.99%) | ARB | 690 | 97 | 1.23×1013 | [ |
A1050 | ARB | 600 | 260 | 1.33×1014 | [ |
A1050 | HPT | 500 | 177 | 2-4×1014 | [ |
A1050 | HPT | 600 | 173 | [ | |
A1100 | HPT | 400 | 285 | [ | |
A1100 | ECAP | 680 | 185 | [ | |
A1100 | ARB | 330 | 290 | [ | |
A1100 | ARB | 280 | 310 | 1.3×1014 | [ |
A1100 | ARB | 260 | 302 | 2.2×1014 | [ |
A2024 | ARB | 350 | 425 | 1.0×1015 | [ |
A2024 | ECAP | 300 | 325 | [ | |
A3004 | ECAP | 290 | 370 | [ | |
A5083 | ECAP | 225 | 420 | [ | |
A6060 | HPT | 180 | 525 | [ | |
A6061 | ECAP | 400 | 380 | [ | |
A6061 | ECAP | 290 | 280 | [ | |
A6061 | ECAP | 280 | 327 | [ | |
A6061 | HPT | 200 | 510 | 2.6×1014 | [ |
A6061 | ARB | 240 | 370 | [ | |
A6061 | ARB | 310 | 363 | [ | |
A6063 | ECAP | 500 | 255 | [ | |
A7075 | ECAP | 210 | 480 | [ | |
A8011 | ARB | 700 | 180 | [ | |
Al-1.1Mg (at%) | HPT | 390 | 415 | [ | |
Al-3.3Mg (at%) | HPT | 200 | 600 | [ | |
Al-5.5Mg (at%) | HPT | 190 | 660 | [ | |
Al-8.8Mg (at%) | HPT | 140 | 735 | [ | |
Al-1.3Ag (at%) | HPT | 500 | 200 | [ | |
Al-3.0Ag (at%) | HPT | 367 | 245 | [ | |
Al-5.9Ag (at%) | HPT | 278 | 370 | [ | |
Al-1.7Cu (at%) | HPT | 207 | 670 | [ | |
Al-2Fe (wt%) | HPT | 300 | 440 | < 1.1×1015 | [ |
Al-2Fe (wt%) | HPT | 150 | 590 | < 2.6×1015 | [ |
Al-2Fe (wt%) | HPT | 140 | 655 | < 3.3×1015 | [ |
Al-0.2Zr (wt%) | ECAP | 630 | 160 | [ | |
Al-3Mg (wt%) | ECAP | 200 | 390 | 2.7×1015 | [ |
Al-3Mg (wt%) | HPT | 150 | 655 | [ | |
Al-1.6Fe-1Cu (wt%) | ECAP | 370 | 190 | 3.22×1014 | [ |
Al-3Cu-1Li (wt%) | HPT | 130 | 700 | 2.78×1015 | [ |
Fig. 1. Microhardness plotted versus (a) shear strain and (b) electrical conductivity for Al-La-Ce alloy before and after HPT processing for various turns and after aging at different temperatures.
Fig. 2. XRD measurements and Rietveld analyses for Al-La-Ce alloy before and after HPT processing for various turns and after aging at 503 K. (a) Overall XRD profiles, (b) magnified view of (311) peak of Al, (c) lattice parameter of Al-based FCC phase plotted versus shear strain and (d) dislocation density and crystallite size of Al-based FCC phase plotted versus shear strain.
Fig. 3. (a) STEM bright-field image, (b) HAADF image, (c) EDS mapping for La, (d) EDS mapping for Ce, (e, h) TEM bright-field images, (f, i) TEM dark-field images and (g, j) SAED patterns taken from (a-d) overall microstructure, (e-g) eutectic region and (h-j) Al matrix for initial as-cast Al-La-Ce alloy.
Fig. 4. TEM bright-field images (left), dark-field images (right) and corresponding SAED patterns (center) for Al-La-Ce alloy processed by (a-c) HPT for N = 1000 and (d-f) HPT for N = 1000 followed by aging at 503 K.
Fig. 5. (a, e,i) STEM bright-field images, (b, f, j) HAADF images, (c, g) EDS mappings of La and (d, h) EDS mappings of Ce for Al-La-Ce alloy processed by (a-d) HPT for N = 1000 and (e-h) HPT for N = 1000 followed by aging at 503 K. Micrographs in (i) and (j) are magnified views of squared region in (e).
Fig. 6. TEM high-resolution images of Al-La-Ce alloy processed by HPT for N = 1000, where (c) and (d) are magnified views of squared regions indicated in (b). (a, b) distribution of Al grains and Al3RE11 (RE: La, Ce) particles, (c) semi-coherent Al/Al3RE11 boundary, and (d) Lomer-Cottrell dislocation lock within Al nanograin.
Fig. 7. TEM high-resolution images of Al-La-Ce alloy processed by HPT for N = 1000 and subsequently aged at 503 K, where (b), (d) and (f) are magnified views of squared regions indicated in (a), (c) and (e), respectively. (a) Al3RE11 (RE: La, Ce) particles at Al/Al boundary, (b) ordered structure of Al3RE11, (c) Al3RE11 particle at Al/Al/Al triple junction, (d) low-angle Al/Al boundary with corresponding geometrically-necessary dislocations denoted with T, (e, f) Al3RE11/Al3RE11 boundaries and (g) Al3RE11 precipitate within Al nanograin.
Fig. 8. Relationship between yield stress (σ) and one third of hardness (HV) with inverse root of average grain size (dav) for pure aluminum and Al-based alloys processed by SPD and for Al-La-Ce and Al-Ca processed by ultra-SPD and aging. Data for SPD processes were taken from Table 1 [20,33,[40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64]] and data for ultra-SPD process of Al-Ca were taken from Ref. [15].
Calculated | Experimental | Difference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
σ0 (MPa) | σGB (MPa) | σDis (MPa) | σPt (MPa) | σSS (MPa) | σAl (MPa) | σ (MPa) | HV(Hv) | HV(Hv) | HV(Hv, %) | |
Ultra-SPD | 10 | 400 | 168 | 0 | 14 | 592 | 649 | 199 | 203 | 4 Hv, 2% |
Aging | 10 | 283 | 50 | 258 | 6 | 607 | 673 | 206 | 218 | 12 Hv, 5% |
Table 2 Hardening by different mechanisms calculated using Eqs. (2-7) in comparison with experimentally-measured hardness.
Calculated | Experimental | Difference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
σ0 (MPa) | σGB (MPa) | σDis (MPa) | σPt (MPa) | σSS (MPa) | σAl (MPa) | σ (MPa) | HV(Hv) | HV(Hv) | HV(Hv, %) | |
Ultra-SPD | 10 | 400 | 168 | 0 | 14 | 592 | 649 | 199 | 203 | 4 Hv, 2% |
Aging | 10 | 283 | 50 | 258 | 6 | 607 | 673 | 206 | 218 | 12 Hv, 5% |
[1] | W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Mater. Sci. Eng. A 280 (2000)37-49. |
[2] | A.A. El-Aty, Y. Xu, X. Guo, S.H. Zhang, Y. Ma, D. Chen, J. Adv. Res. 10(2018) 49-67. |
[3] | E. Hall, Proc. Phys. Soc. B 64 (1951) 747-752. |
[4] | N.J. Petch, Acta Cryst 6(1953) 96. |
[5] | C.S. Pande, K.P. Cooper, Prog. Mater. Sci. 54(2009) 689-706. |
[6] | V.M. Segal, Mater. Sci. Eng. A 197 (1995) 157-164. |
[7] | R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51(2006) 881-981. |
[8] | W. Skrotzki, Mater. Trans. 60(2019) 1331-1343. |
[9] | Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater 47 (1999) 579-583. |
[10] | L. Jiang, M.T. Pérez-Prado, P.A. Gruber, E. Arzt, O.A. Ruano, M.E. Kassner, Acta Mater 56 (2008) 1228-1242. |
[11] | T. Hausöl, V. Maier, C.W. Schmidt, M. Winkler, H.W. Höppel, M. Göken, Adv. Eng. Mater. 12(2010) 740-746. |
[12] | A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53(2008) 893-979. |
[13] | K. Edalati, Z. Horita, Mater. Sci. Eng. A 652 (2016) 325-352. |
[14] | P.V. Liddicoat, X.Z. Liao, Y. Zhao, Y. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Va- liev, S.P. Ringer, Nat. Commun. 1(2010) 63. |
[15] | R.Z. Valiev, N.A. Enikeev, M.Y. Murashkin, V.U. Kazykhanov, X. Sauvage, Scr. Mater. 63(2010) 949-952. |
[16] | Y. Chen, N. Gao, G. Sha, S.P. Ringer, M.J. Starink, Acta Mater 109(2016) 202-212. |
[17] | Y. Zhang, S. Jin, P.W. Trimby, X. Liao, M.Y. Murashkin, R.Z. Valiev, J. Liu, J.M. Cairney, S.P. Ringer, G. Sha, Acta Mater 162 (2019) 19-32. |
[18] | X. Sauvage, F. Cuvilly, A. Russell, K. Edalati, Mater. Sci. Eng. A 798 (2020) 140108. |
[19] | H.J. Choi, S.W. Lee, J.S. Park, D.H. Bae, Mater. Trans. 50(2009) 640-643. |
[20] | N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Acta Mater 57 (2009) 4198-4208. |
[21] | M.J. Starink, Mater. Sci. Eng. A 705 (2017) 42-45. |
[22] | A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, Scr. Meter. 23(1989) 1679-1684. |
[23] | G.E. Fougere, J.R. Weertman, R.W. Siegel, S. Kim, Scr. Metall. Mater. 26(1992) 1879-1883. |
[24] | D.A. Konstantinidis, E.C. Aifantis, Nanostruct. Mater. 10(1998) 1111-1118. |
[25] | H. Conrad, J. Narayan, Scr. Meter. 42(2000) 1025-1030. |
[26] | M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51(2006) 427-556. |
[27] | T.D. Shen, R.B. Schwarz, S. Feng, J.G. Swadener, J.Y. Huang, M. Tang, J. Zhang, S.C. Vogel, Y. Zhao, Acta Mater 55 (2007) 5007-5013. |
[28] | C.E. Carlton, P.J. Ferreira, Acta Mater 55 (2007) 3749-3756. |
[29] | C.S. Pande, K.P. Cooper, Prog. Mater. Sci. 54(2009) 689-706. |
[30] | K.A. Padmanabhan, G.P. Dinda, H. Hahn, H. Gleiter, Mater. Sci. Eng. A 452 (2007) 462-468. |
[31] | J.H. Schneibel, M. Heilmaier, Mater. Trans. 55(2014) 44-51. |
[32] | R.W. Armstrong, Philos. Mag. 96(2016) 3097-3108. |
[33] | Y. Ito, K. Edalati, Z. Horita, Mater. Sci. Eng. A 679 (2017) 428-434. |
[34] | W. Xu, L.P. Dávila, Mater. Sci. Eng. A 710 (2018) 413-418. |
[35] | R. Tejedor, K. Edalati, J.A. Benito, Z. Horita, J.M. Cabrera, Mater. Sci. Eng. A 743 (2019) 597-605. |
[36] | S.N. Naik, S.M. Walley, J. Mater. Sci. 55(2020) 2661-2681. |
[37] | B. Cai, Q.P. Kong, L. Lu, K. Lu, Scr. Mater. 41(1999) 755-759. |
[38] | N.Q. Chinh, P. Szommer, Z. Horita, T.G. Langdon, Adv. Mater. 18(2006) 34-39. |
[39] | Y.B. Wang, B.Q. Li, M.L. Sui, S.X. Mao, Appl. Phys. Lett. 92(2008) 011903. |
[40] | J. Dvorak, V. Sklenicka, Z. Horita, Mater. Trans. 49(2008) 15-19. |
[41] | J. Xu, X. Zhu, L. Shi, D. Shan, B. Guo, T.G. Langdon, Adv. Eng. Mater. 17(2015) 1022-1033. |
[42] | C. Xu, M. Furukawa, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 398 (2005) 66-76. |
[43] | T. Inoue, Z. Horita, H. Somekawa, F. Yin, Mater. Trans. 50(2009) 27-33. |
[44] | J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 387 (2004) 55-59. |
[45] | N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Y. Minamino, Mater. Sci. Forum 512 (2006) 91-96. |
[46] | N. Kamikawa, H.W. Zhang, X. Huang, N. Hansen, Mater. Sci. Forum 579 (2008) 135-146. |
[47] | X. Huang, N. Kamikawa, N. Hansen, Mater. Sci. Eng. A 483 (2008) 102-104. |
[48] | J. Zhang, N. Gao, M.J. Starink, Mater. Sci. Eng. A 528 (2011) 2581-2591. |
[49] | Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon, Metall. Mater. Trans. A 31 (2000) 691-701. |
[50] | H. Pirgazi, A. Akbarzadeh, R. Petrov, L. Kestens, Mater. Sci. Eng. A 497 (2008) 132-138. |
[51] | H. Adachi, Y. Miyajima, M. Sato, N. Tsuji, Mater. Trans. 56(2015) 671-678. |
[52] | R. Khatami, A. Fattah-alhosseini, Y. Mazaheri, M.K. Keshavarz, M. Haghshenas, Int. J. Adv. Manuf. Tech. 93(2017) 6 81-6 89. |
[53] | E.V. Bobruk, M.Y. Murashkin, V.U. Kazykhanov, R.Z. Valiev, Rev. Adv. Mater. Sci 31 (2012) 109-115. |
[54] | W.J. Kim, J.K. Kim, T.Y. Park, S.I. Hong, D.I. Kim, Y.S. Kim, J.D. Lee, Metall. Mater. Trans. A 33 (2002) 3155-3164. |
[55] | I.F. Mohamed, S. Lee, K. Edalati, Z. Horita, S. Hirosawa, K. Matsuda, D. Terada, Metall. Mater. Trans. A 46 (2015) 2664-2673. |
[56] | M.R. Rezaei, M.R. Toroghinejad, F. Ashrafizadeh, J. Mater. Proc. Technol. 211(2011) 1184-1190. |
[57] | S.H. Lee, Y. Saito, T. Sakai, H. Utsunomiya, Mater. Sci. Eng. A 325 (2002) 228-235. |
[58] | Z.P. Xing, S.B. Kang, H.W. Kim, Metall. Mater. Trans. A 33 (2002) 1521-1530. |
[59] | K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, Z. Horita, Acta Mater. 69(2014) 68-77. |
[60] | A. Duchaussoy, X. Sauvage, K. Edalati, Z. Horita, G. Renou, A. Deschamps, F. De Geuser, Acta Mater 167 (2019) 89-102. |
[61] | Y.S. Sato, M. Urata, H. Kokawa, K. Ikeda, Mater. Sci. Eng. A 393 (2005) 344-351. |
[62] | M. Reihanian, R. Ebrahimi, N. Tsuji, M.M. Moshksar, Mater. Sci. Eng. A 473 (2008) 189-194. |
[63] | Z. Zhu, J. Han, C. Gao, M. Liu, J. Song, Z. Wang, H. Li, Mater. Sci. Eng. A 681 (2017) 65-73. |
[64] | K. Edalati, Mater. Trans. 60(2019) 1221-1229. |
[65] | K. Edalati, R. Uehiro, K. Fujiwara, Y. Ikeda, H.W. Li, X. Sauvage, R.Z. Valiev, E. Akiba, I. Tanaka, Z. Horita, Mater. Sci. Eng. A 701 (2017) 158-166. |
[66] | K. Edalati, H. Emami, A. Staykov, D.J. Smith, E. Akiba, Z. Horita, Acta Mater 99(2015) 150-156. |
[67] | K. Kitabayashi, K. Edalati, H.W. Li, E. Akiba, Z. Horita, Adv. Eng. Mater. 22(2020)1900027. |
[68] | K. Edalati, H. Emami, Y. Ikeda, H. Iwaoka, I. Tanaka, E. Akiba, Z. Horita, Acta Mater 108 (2016) 293-303. |
[69] | E.I. López Gómez, K. Edalati, D.D. Coimbrão, F.J. Antiqueira, G. Zepon, J.M. Cubero-Sesin, W.J. Botta, AIP Adv 10 (2020) 055222. |
[70] | K. Edalati, R. Uehiro, Y. Ikeda, H.W. Li, H. Emami, Y. Filinchuk, M. Arita, X. Sauvage, I. Tanaka, E. Akiba, Acta Mater 149 (2018) 88-96. |
[71] | K. Fujiwara, R. Uehiro, K. Edalati, H.W. Li, R. Floriano, E. Akiba, Z. Horita, Mater. Trans. 59(2018) 741-746. |
[72] | A. Mohammadi, N.A. Enikeev, M.Y. Murashkin, M. Arita, K. Edalati, Acta Mater 203 (2021) 116503. |
[73] | N.D. Bakhteeva, E.V. Todorova, N.N. Kolobylina, A.L. Vasil’ev, V.P. Sirotinkin, Russ. Metall. 2013 (2013) 206-216. |
[74] | M.Y. Murashkin, I. Sabirov, A.E. Medvedev, N.A. Enikeev, W. Lefebvre, R.Z. Va- liev, X. Sauvage , Mater. Des. 90(2016) 433-442. |
[75] | A.E. Medvedev, M.Y. Murashkin, N.A. Enikeev, R.Z. Valiev, P.D. Hodgson, R. Lapovok. J. Alloys Compd. 745(2018) 696-704. |
[76] | A.E. Medvedev, M.Y. Murashkin, N.A. Enikeev, I. Bikmukhametov, R.Z. Valiev, P.D. Hodgson, R. Lapovok. J. Alloys Compd. 796(2019) 321-330. |
[77] | S.C. Wang, N. Zhou, D.F. Song, D. Nong, Mater. Sci. Forum 898 (2017) 367-371. |
[78] | Y. Zhang, F. Wei, J. Mao, G. Niu, Mater. Charact. 158(2019) 109963. |
[79] | K. Edalati, D.J. Lee, T. Nagaoka, M. Arita, H.S. Kim, Z. Horita, R. Pippan, Mater. Trans. 57(2016) 533-538. |
[80] | L. Lutterotti, S. Matthies, H.R. Wenk, A.S. Schultz, J.W. Richardson Jr, J.Appl. Phys. 81(1997) 594-600. |
[81] | G.K. Williamson, R.E. Smallman III, Philos. Mag. 1(1956) 34-46. |
[82] | K. Edalati, Z. Horita, Mater. Trans. 50(2009) 92-95. |
[83] | M.J. Starink, X. Cheng, S. Yang, Acta Mater 61 (2013) 183-192. |
[84] | T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60(2014) 130-207. |
[85] | O. Renk, R. Pippan, Mater. Trans. 60(2019) 1270-1282. |
[86] | S. Kuramoto, T. Furuta, Mater. Trans. 60(2019) 1116-1122. |
[87] | A.P. Zhilyaev, T.R. McNelley, T.G. Langdon, J.Mater.Sci. 42(2007)1517-1528. |
[88] | M. Kawasaki, R.B. Figueiredo, Y. Huang, T.G. Langdon. J. Mater. Sci. 49(2014) 6586-6596. |
[89] | V.V. Popov, E.N. Popova, Mater. Trans. 60(2019) 1209-1220. |
[90] | S. Lee, K. Edalati, Z. Horita, Mater. Trans. 51(2010) 1072-1079. |
[91] | N. Maury, N.X. Zhang, Y. Huang, A.P. Zhilyaev, T.G. Langdon, Mater. Sci. Eng. A 638 (2015) 174-182. |
[92] | K. Edalati, Z. Horita, Y. Mine, Mater. Sci. Eng. A 527 (2010) 2136-2141. |
[93] | B.B. Straumal, A. Korneva, A.R. Kilmametov, L. Lity nska-Dobrzy nska, A.S. Gor- nakova, R. Chulist, M.I. Karpov, P. Zi ˛eba, Materials 12 (2019) 426. |
[94] | K. Edalati, S. Toh, M. Arita, M. Watanabe, Z. Horita, Appl. Phys. Lett. 102(2013) 181902. |
[95] | K. Edalati, M. Arimura, Y. Ikoma, T. Daio, M. Miyata, D.J. Smith, Z. Horita, Mater. Res. Lett. 3(2015) 216-221. |
[96] | V.I. Levitas, Mater. Trans. 60(2019) 1294-1301. |
[97] | H. Razavi-Khosroshahi, M. Fuji, Mater. Trans. 60(2019) 1203-1208. |
[98] | K. Edalati, J. Matsuda, M. Arita, T. Daio, E. Akiba, Z. Horita, Appl. Phys. Lett. 103(2013) 143902. |
[99] | A. Korneva, B. Straumal, R. Chulist, A. Kilmametov, P. Bała, G. Cios, N. Schell, P. Zi ˛eba, Mater. Lett. 179(2016) 12-15. |
[100] | Á. Révész, Z. Kovács, Mater. Trans. 60(2019) 1283-1293. |
[101] | K. Edalati, Y. Yokoyama, Z. Horita, Mater. Trans. 51(2010) 23-26. |
[102] | V.D. Blank, M.Y. Popov, B.A. Kulnitskiy, Mater. Trans. 60(2019) 1500-1505. |
[103] | V. Beloshenko, I. Vozniak, Y. Beygelzimer, Y. Estrin, R. Kulagin, Mater. Trans. 60(2019) 1192-1202. |
[104] | L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 304 (2004) 422-426. |
[105] | K.A. Gschneidner, F.W. Calderwood, Bull. Alloy Phase Diag. 9(1988) 669-672. |
[106] | K.A. Gschneidner, F.W. Calderwood, Bull. Alloy Phase Diag. 9(1988) 6 86-6 89. |
[107] | J. Gubicza, S.V. Dobatkin, E. Khosravi, A.A. Kuznetsov, J.L. Lábár, Mater. Sci. Eng. A 528 (2011) 1828-1832. |
[108] | J. Gubicza, N.Q. Chinh, J.L. Lábár, Z. Heged ˝us, T.G. Langdon, Mater. Sci. Eng. A 527 (2010) 752-760. |
[109] | Y. Huang, S. Sabbaghianrad, A.I. Almazrouee, K.J. Al-Fadhalah, S.N. Alhajeri, T.G. Langdon, Mater. Sci. Eng. A 656 (2016) 55-66. |
[110] | K. Edalati, Y. Hashiguchi, H. Iwaoka, H. Matsunaga, R.Z. Valiev, Z. Horita, Mater. Sci. Eng. A 729 (2018) 340-348. |
[111] | X.L. Wu, Y.T. Zhu, Y.G. Wei, Q. Wei, Phys. Rev. Lett. 103(2009) 205504. |
[112] | J.H. Lee, T.B. Holland, A.K. Mukherjee, X. Zhang, H. Wang, Sci. Rep. 3(2013) 1061. |
[113] | M.S. Colla, B. Amin-Ahmadi, H. Idrissi, L. Malet, S. Godet, J.P. Raskin, D. Schryvers, T. Pardoen, Nat. Commun. 6(2015) 1-8. |
[114] | J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Science 355 (2017) 1292-1296. |
[115] | X. Sauvage, A. Duchaussoy, G. Zaher, Mater. Trans. 60(2019) 1151-1158. |
[116] | G. Wilde, S. Divinski, Mater. Trans. 60(2019) 1302-1315. |
[117] | H.S. Kim, On the rule of mixtures for the hardness of particle reinforced com- posites, Mater.Sci. Eng. A 289 (2000)30-33. |
[118] | T.K. Akopyan, N.A. Belov, E.A. Naumova, N.V. Letyagin, T.A. Sviridova, Trans. Nonferrous Met. Soc. China 30 (2020) 850-862. |
[119] | F. Czerwinski, B.S. Amirkhiz, Materials 13 (2020) 4549. |
[120] | D. Tabor, The hardness of solids, Rev.Phys. Technol. 1(1970) 145-179. |
[121] | H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Acta Mater 61 (2013) 2769-2782. |
[122] | E.L. Huskins, B. Cao, K.T. Ramesh, Mater. Sci. Eng. A 527 (2010) 1292-1298. |
[123] | G.E. Totten, D.S. MacKenzie, Handbook of Aluminum, Volume 1, Physical Met- allurgy and Processes, CRC Press, 2003. |
[124] | Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater 187 (2020) 51-65. |
[125] | Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65(2021) 190-201. |
[126] | J.W. Wyrzykowsi, M.W. Grabski, Philos. Mag. 53(1986) 505-520. |
[127] | N. Hansen, Scr. Mater. 51(2004) 801-806. |
[128] | S. Thangaraju, M. Heilmaier, B.S. Murty, S.S. Vadlamani, Mater. Sci. Eng. A 527 (2010) 7821-7825. |
[129] | S. Thangaraju, M. Heilmaier, B.S. Murty, S.S. Vadlamani, Adv. Eng. Mater. 14(2012) 892-897. |
[130] | N. Hansen, X. Huang, Acta Mater 46 (1998) 1827-1836. |
[131] | A.J. Ardell, Metall. Trans. A 16 (1985) 2131-2165. |
[132] | P.B. Hirsch, F.J. Humphreys , in: A. Argon (Ed.), Physics and Strength of Plastic- ity, MIT Press, Cambridge, MA, 1969, pp. 189-216. |
[133] | M.A. Meyers, K.K. Chawla, Mechanical Metallurgy: Principles and Applications, Prentice Hall, Englewood Cliffs, NJ, 1984. |
[134] | Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander, H.E. Ekström, Metall. Mater. Trans. A 37 (2006) 1999-2006. |
[135] | L.A. Gypen, A. Deruyttere. J. Mater. Sci. 12(1977) 1028-1033. |
[136] | H.A. Roth, C.L. Davis, R.C. Thomson, Metall. Mater. Trans. A 28 (1997) 1329-1335. |
[137] | T.S. Orlova, T.A Latynina, A.M. Mavlyutov, M.Y. Murashkin, R.Z. Valiev. J. Al- loys Compd. 784(2019) 41-48. |
[1] | Peipei Ma, Chunhui Liu, Qiuyu Chen, Qing Wang, Lihua Zhan, Jianjun Li. Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy [J]. J. Mater. Sci. Technol., 2020, 46(0): 107-113. |
[2] | Z.Y. Zhang, L.X. Sun, N.R. Tao. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy [J]. J. Mater. Sci. Technol., 2020, 48(0): 18-22. |
[3] | Lu Qi, der Zwaag Sybrandvan, Xu Wei. Charting the ‘composition-strength’ space for novel austenitic, martensitic and ferritic creep resistant steels [J]. J. Mater. Sci. Technol., 2017, 33(12): 1577-1581. |
[4] | L.X. Sun, N.R. Tao, M. Kuntz, J.Q. Yu, K. Lu. Annealing-induced Hardening in a Nanostructured Low-carbon Steel Prepared by Using Dynamic Plastic Deformation [J]. J. Mater. Sci. Technol., 2014, 30(8): 731-735. |
[5] | A.Momeni, A.Shokuhfar, S.M.Abbasi. Dynamic Recrystallization of a Cr-Ni-Mo-Cu-Ti-V Precipitation Hardenable Stainless Steel [J]. J Mater Sci Technol, 2007, 23(06): 775-778. |
[6] | Kai LIU, Yiyin SHAN, Zhiyong YANG, Jianxiong LIANG, Lun LU, Ke YANG. Effect of Heat Treatment on Prior Grain Size and Mechanical Property of a Maraging Stainless Steel [J]. J Mater Sci Technol, 2006, 22(06): 769-774. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||