J. Mater. Sci. Technol. ›› 2021, Vol. 90: 243-254.DOI: 10.1016/j.jmst.2021.03.013
• Invited Review • Previous Articles
Shanshan Hua, Harry Finklea,b, Xingbo Liua,*()
Received:
2020-12-29
Revised:
2021-03-22
Accepted:
2021-03-30
Published:
2021-11-05
Online:
2021-11-05
Contact:
Xingbo Liu
About author:
* E-mail address: xingbo.liu@mail.wvu.edu (X. Liu).Shanshan Hu, Harry Finkle, Xingbo Liu. A review on molten sulfate salts induced hot corrosion[J]. J. Mater. Sci. Technol., 2021, 90: 243-254.
Sulfate salt | Tm ( °C) |
---|---|
Na2SO4 | 884 |
K2SO4 | 1069 |
Na2S2O7 | 400.9 |
K2S2O7 | 325 |
Na3Fe(SO4)3 | 624 |
K2Fe(SO4)3 | 618 |
Na2SO4—CoSO4 | 575 |
K2SO4—CoSO4 | 535 |
Table 1 Melting points of various sulfate/pyrosulfate salts and eutectic salts [48,49].
Sulfate salt | Tm ( °C) |
---|---|
Na2SO4 | 884 |
K2SO4 | 1069 |
Na2S2O7 | 400.9 |
K2S2O7 | 325 |
Na3Fe(SO4)3 | 624 |
K2Fe(SO4)3 | 618 |
Na2SO4—CoSO4 | 575 |
K2SO4—CoSO4 | 535 |
Alloys | Element (wt%) | Component | Ref | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ni | Fe | Co | Cr | Al | S | P | C | Si | Nb | Mo | W | V | Ti | Mn | Hf | Zr | ||||
Ni-based | IN738-LC | Bal. | 0.44 | 8.18 | 15.92 | 4.0 | 0.004 | 0.003 | 0.09 | 0.99 | 1.94 | 3.2 | 3.7 | Gas turbine blades | [ | |||||
Nimonic105 | Bal. | 0.67 | 20 | 14.77 | 4.65 | 0.001 | 0.008 | 0.124 | 0.016 | 4.6 | 0.014 | 0.21 | Gas turbine nozzle | [ | ||||||
IN792 | Bal. | 8.9 | 12.4 | 3.5 | 5ppm | 0.08 | 1.8 | 4.0 | 4.0 | Gas turbine blades | [ | |||||||||
CMSX-4 | Bal. | 9.0 | 6.5 | 5.6 | 6 | 1.0 | Gas turbine blades | [ | ||||||||||||
Fe-based | Stainless steel | 0.11 | Bal. | 11.9 | 0.002 | 0.005 | 0.019 | 0.04 | 0.46 | 0.007 | 0.03 | 0.03 | 0.21 | 0.34 | Recuperator | [ | ||||
T22 | Bal. | 2.27 | 0.008 | 0.029 | 0.15 | 0.22 | 1.43 | 0.44 | boiler | [ | ||||||||||
TP347H | 10.4 | Bal. | 17.1 | 0.006 | 0.012 | 0.06 | 0.45 | 0.7 | 1.84 | Superheater tube | [ | |||||||||
0.21 | Bal. | 1.13 | 0.015 | 0.02 | 0.05 | 0.24 | 0.24 | 0.16 | 0.375 | 0.42 | Reheater | [ | ||||||||
Co-based | X-45 | 10 | 1.0 | Bal. | 25.5 | 0.25 | 0.7 | 7.5 | 0.7 | Gas turbine nozzle | [ | |||||||||
Fe-Ni-Cr based | Incoloy 800HT | 31.2 | 45.2 | 0.61 | 20.06 | 0.51 | <0.001 | 0.077 | 0.34 | 0.52 | 0.71 | Pipe | [ | |||||||
Nb-based | C-103 | 0.015 | Bal. | 0.5 | 1 | 10 | 0.7 | sodium vapor lamps. rocket thrusters | [ | |||||||||||
Nb521 | Bal. | 2.1 | 5-6 | 1.6 | Turbine engine | [ |
Table 2 The chemical compositions of widely reported high temperature components in the literature.
Alloys | Element (wt%) | Component | Ref | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ni | Fe | Co | Cr | Al | S | P | C | Si | Nb | Mo | W | V | Ti | Mn | Hf | Zr | ||||
Ni-based | IN738-LC | Bal. | 0.44 | 8.18 | 15.92 | 4.0 | 0.004 | 0.003 | 0.09 | 0.99 | 1.94 | 3.2 | 3.7 | Gas turbine blades | [ | |||||
Nimonic105 | Bal. | 0.67 | 20 | 14.77 | 4.65 | 0.001 | 0.008 | 0.124 | 0.016 | 4.6 | 0.014 | 0.21 | Gas turbine nozzle | [ | ||||||
IN792 | Bal. | 8.9 | 12.4 | 3.5 | 5ppm | 0.08 | 1.8 | 4.0 | 4.0 | Gas turbine blades | [ | |||||||||
CMSX-4 | Bal. | 9.0 | 6.5 | 5.6 | 6 | 1.0 | Gas turbine blades | [ | ||||||||||||
Fe-based | Stainless steel | 0.11 | Bal. | 11.9 | 0.002 | 0.005 | 0.019 | 0.04 | 0.46 | 0.007 | 0.03 | 0.03 | 0.21 | 0.34 | Recuperator | [ | ||||
T22 | Bal. | 2.27 | 0.008 | 0.029 | 0.15 | 0.22 | 1.43 | 0.44 | boiler | [ | ||||||||||
TP347H | 10.4 | Bal. | 17.1 | 0.006 | 0.012 | 0.06 | 0.45 | 0.7 | 1.84 | Superheater tube | [ | |||||||||
0.21 | Bal. | 1.13 | 0.015 | 0.02 | 0.05 | 0.24 | 0.24 | 0.16 | 0.375 | 0.42 | Reheater | [ | ||||||||
Co-based | X-45 | 10 | 1.0 | Bal. | 25.5 | 0.25 | 0.7 | 7.5 | 0.7 | Gas turbine nozzle | [ | |||||||||
Fe-Ni-Cr based | Incoloy 800HT | 31.2 | 45.2 | 0.61 | 20.06 | 0.51 | <0.001 | 0.077 | 0.34 | 0.52 | 0.71 | Pipe | [ | |||||||
Nb-based | C-103 | 0.015 | Bal. | 0.5 | 1 | 10 | 0.7 | sodium vapor lamps. rocket thrusters | [ | |||||||||||
Nb521 | Bal. | 2.1 | 5-6 | 1.6 | Turbine engine | [ |
Fig. 3. The schematic of the process of hot corrosion induced by molten sulfate salts. (a) Attachment of alkaline sulfate particles; (b) formation of the molten sulfate film coating the oxide surface; (c) development of microdefects and microcracks in the protective oxide layer; (d) pitting corrosion due to oxidation of the metal substrate.
Fig. 4. Metal oxide dissolution and reprecipitation as a porous MO oxide supported by the solubility gradient in a fused salt film [47]. The “h●” represents transport of holes from the reduction reactions at the oxide/melt interface.
Fig. 6. Trace of basicity and oxygen activity measured for a preoxidized 99% Ni covered with a Na2SO4 film at 900 °C in 0.1% SO2—O2 gas atmosphere (preoxidized at 900 °C for 4 h in O2). Numbers in the figure designate the corrosion time in hours except as indicated. The dashed line indicates the position of the solubility minimum for NiO as a function of the partial pressure of O2 [85].
Coating | Bare alloy | hot corrosion test | Weight gain (mg cm-2) | Decrement percentage (%) | Ref | |||
---|---|---|---|---|---|---|---|---|
Molten salt composition | Temperature ( °C) | Cycle/time (h) | Uncoated sample | Coated sample | ||||
Ni-50Cr | T22 | Na2SO4-60% V2O5 | 900 | 50 | 218 | 48 | 78.0 | [ |
SA 516 | 245 | 29 | 88.2 | |||||
Ni-20Cr | 800H | Na2SO4-60% V2O5 | 900 | 50 | 51.6 | 10.2 | 80.2 | [ |
Stellite-6 | 32.4 | 37.2 | ||||||
Ni3Al | 16.2 | 68.6 | ||||||
NiCrAlY | 5.4 | 89.5 | ||||||
Ni-20Cr | Superni 600 | Na2SO4-60% V2O5 | 900 | 50 | 15.8 | 6.9 | 56.3 | [ |
Cr3C2—NiCr | 8.2 | 48.1 | ||||||
Aluminide | Ni-based alloy | 75% Na2SO4 -25% K2SO4 | 900 | 100 | 221 | 78 | 64.7 | [ |
NiCr-CrAl | 26 | 88.2 | ||||||
NiCrAl | Superni 76 | Na2SO4-60% V2O5 | 900 | 100 | 34.4 | 11.2 | 67.4 | [ |
Superni 750 | 32.2 | 4.6 | 85.7 | |||||
Superfer 800 | 27.1 | 9.5 | 64.9 | |||||
NiAl | Ni-based alloy | 75% Na2SO4 - 25% NaCl | 850 | 200 | 8.1 | [ | ||
(Ni,Pt)Al | 5.99 | |||||||
Zr doped (Ni,Pt)Al | 1.83 | |||||||
CoAl | DZ125 | 75% Na2SO4 - 25% NaCl | 900 | 100 | 106 | 0.33 | 99.69 | [ |
CoAlDy | 0.22 | 99.79 | [ | |||||
CoAlY | 0.42 | 99.60 | [ | |||||
CoAlYCe | 0.31 | 99.70 | [ | |||||
CoAl | Ni-based alloy | 0.47 | ||||||
CoAlSi | 0.32 | [ | ||||||
AlSiY | DD5 | 75% Na2SO4 -25% K2SO4 | 900 | 100 | 4.5 | 1.8 | 60.0 | [ |
Pt modified AlSiY | 1.3 | 71.1 | ||||||
NiCoCrAlY | K417G | 75% Na2SO4 +25% K2SO4 | 1000 | 300 | 1.06 | [ | ||
Aluminized NiCoCrAlY | 0.92 | |||||||
NiCrAlY | Ni-based alloy | 75% Na2SO4+25% K2SO4/NaCl | 1000 | 300 | 1.01 | 0.86 | 14.85 | [ |
Aluminized NiCrAlY | 0.82 | 18.81 | ||||||
MCrAlYSiB | DSM11 | 80% Na2SO4+20% K2SO4 | 900 | 20 | 1.02 | 0.34 | 66.67 | [ |
MCrAlYSiB/CrAl | 0.05 | 95.10 | ||||||
MCrAlYSiB | Ni-based alloy | 75% Na2SO4 + 25% NaCl | 1000 | 1000 | 1.2 | [ | ||
Gradient MCrAlYSiB | 1.7 | |||||||
MCrAlYSiB | DSM11 | 80% Na2SO4+20% K2SO4 | 1000 | 100 | 3.05 | 0.75 | 75.41 | [ |
Gradient MCrAlYSiB | 0.43 | 85.90 | ||||||
Enamel-Al2O3 covered NiCoCrAlY | K38G | 75% Na2SO4+25% K2SO4 | 1000 | 100 | 1.06 | 0.98 | 7.54 | [ |
NiCoCrAlY | 0.08 | 92.45 | ||||||
Zr-Y modified silicide | Nb-22Ti-15Si-5Cr-3Al-2.5Hf | 75% Na2SO4 + 25% NaCl | 900 | 100 | 97 | 7.8 | 91.96 | [ |
Silicide | Nb-20Ti-15Si-5Cr-3Al-3Hf | 75% Na2SO4 + 25% NaCl | 900 | 50 | 136.2 | 4.4 | 96.77 | [ |
Table 3 Summarization of the applications and performances of various coatings. Cycle/time refers to the times of cyclic hot corrosion (be repeatedly heated to the target temperature and cooled to the room temperature) or duration to be hold at the targeted temperature; weight gain stands for the increment of weight after hot corrosion test; Decrement percentage represents the decrement of weight gain for the coated sample with respect to that of the uncoated sample in the same hot corrosion test.
Coating | Bare alloy | hot corrosion test | Weight gain (mg cm-2) | Decrement percentage (%) | Ref | |||
---|---|---|---|---|---|---|---|---|
Molten salt composition | Temperature ( °C) | Cycle/time (h) | Uncoated sample | Coated sample | ||||
Ni-50Cr | T22 | Na2SO4-60% V2O5 | 900 | 50 | 218 | 48 | 78.0 | [ |
SA 516 | 245 | 29 | 88.2 | |||||
Ni-20Cr | 800H | Na2SO4-60% V2O5 | 900 | 50 | 51.6 | 10.2 | 80.2 | [ |
Stellite-6 | 32.4 | 37.2 | ||||||
Ni3Al | 16.2 | 68.6 | ||||||
NiCrAlY | 5.4 | 89.5 | ||||||
Ni-20Cr | Superni 600 | Na2SO4-60% V2O5 | 900 | 50 | 15.8 | 6.9 | 56.3 | [ |
Cr3C2—NiCr | 8.2 | 48.1 | ||||||
Aluminide | Ni-based alloy | 75% Na2SO4 -25% K2SO4 | 900 | 100 | 221 | 78 | 64.7 | [ |
NiCr-CrAl | 26 | 88.2 | ||||||
NiCrAl | Superni 76 | Na2SO4-60% V2O5 | 900 | 100 | 34.4 | 11.2 | 67.4 | [ |
Superni 750 | 32.2 | 4.6 | 85.7 | |||||
Superfer 800 | 27.1 | 9.5 | 64.9 | |||||
NiAl | Ni-based alloy | 75% Na2SO4 - 25% NaCl | 850 | 200 | 8.1 | [ | ||
(Ni,Pt)Al | 5.99 | |||||||
Zr doped (Ni,Pt)Al | 1.83 | |||||||
CoAl | DZ125 | 75% Na2SO4 - 25% NaCl | 900 | 100 | 106 | 0.33 | 99.69 | [ |
CoAlDy | 0.22 | 99.79 | [ | |||||
CoAlY | 0.42 | 99.60 | [ | |||||
CoAlYCe | 0.31 | 99.70 | [ | |||||
CoAl | Ni-based alloy | 0.47 | ||||||
CoAlSi | 0.32 | [ | ||||||
AlSiY | DD5 | 75% Na2SO4 -25% K2SO4 | 900 | 100 | 4.5 | 1.8 | 60.0 | [ |
Pt modified AlSiY | 1.3 | 71.1 | ||||||
NiCoCrAlY | K417G | 75% Na2SO4 +25% K2SO4 | 1000 | 300 | 1.06 | [ | ||
Aluminized NiCoCrAlY | 0.92 | |||||||
NiCrAlY | Ni-based alloy | 75% Na2SO4+25% K2SO4/NaCl | 1000 | 300 | 1.01 | 0.86 | 14.85 | [ |
Aluminized NiCrAlY | 0.82 | 18.81 | ||||||
MCrAlYSiB | DSM11 | 80% Na2SO4+20% K2SO4 | 900 | 20 | 1.02 | 0.34 | 66.67 | [ |
MCrAlYSiB/CrAl | 0.05 | 95.10 | ||||||
MCrAlYSiB | Ni-based alloy | 75% Na2SO4 + 25% NaCl | 1000 | 1000 | 1.2 | [ | ||
Gradient MCrAlYSiB | 1.7 | |||||||
MCrAlYSiB | DSM11 | 80% Na2SO4+20% K2SO4 | 1000 | 100 | 3.05 | 0.75 | 75.41 | [ |
Gradient MCrAlYSiB | 0.43 | 85.90 | ||||||
Enamel-Al2O3 covered NiCoCrAlY | K38G | 75% Na2SO4+25% K2SO4 | 1000 | 100 | 1.06 | 0.98 | 7.54 | [ |
NiCoCrAlY | 0.08 | 92.45 | ||||||
Zr-Y modified silicide | Nb-22Ti-15Si-5Cr-3Al-2.5Hf | 75% Na2SO4 + 25% NaCl | 900 | 100 | 97 | 7.8 | 91.96 | [ |
Silicide | Nb-20Ti-15Si-5Cr-3Al-3Hf | 75% Na2SO4 + 25% NaCl | 900 | 50 | 136.2 | 4.4 | 96.77 | [ |
[1] | R.A. Rapp, Y.-.S. Zhang, Jom 46 (1994) 47-55. |
[2] |
J. Stringer, Ann. Rev. Mater. Sci. 7 (1977) 477-509.
DOI URL |
[3] |
W. Wu, Z. Liu, S. Hu, X. Li, C. Du, Ocean. Eng. 146 (2017) 311-323.
DOI URL |
[4] |
T. Zhao, Z. Liu, S. Hu, C. Du, X. Li, J. Mater. Eng. Perform. 26 (2017) 2837-2846.
DOI URL |
[5] |
L. Wang, J. Liang, H. Li, L. Cheng, Z. Cui, Corros. Sci. 178 (2020) 109076.
DOI URL |
[6] |
C.O. Park, R.A. Rapp, J. Electrochem. Soc. 133 (1986) 1636-1641.
DOI URL |
[7] |
N. Eliaz, G. Shemesh, R. Latanision, Eng. Fail Anal. 9 (2002) 31-43.
DOI URL |
[8] |
B. Salehnasab, E. Poursaeidi, S. Mortazavi, G. Farokhian, Eng. Fail. Anal. 60 (2016) 316-325.
DOI URL |
[9] | V. Chawla, A. Chawla, D. Puri, S. Prakash, P.G. Gurbuxani, B.S. Sidhu, J. Miner. Mater. Char. Eng. 10 (2011) 367. |
[10] |
S. Kumar, M. Kumar, A. Handa, Eng. Fail. Anal. 94 (2018) 379-395.
DOI URL |
[11] | R.B. Rebak, Corrosion Rev. 29 (2011) 123-133. |
[12] | Y. Yoon, S. Srinivasan, CORROSION (2019) NACE International, 2019. |
[13] |
J. Stringer, A.J. Minchener, J. Mater. Energy Syst. 7 (1986) 333-344.
DOI URL |
[14] | S. Karlsson, L.-.E. ˚Amand, J. Liske, Fuel 139 (2015) 4 82-4 93. |
[15] |
L. Xu, P. Zhu, H. Jing, K. Guo, S. Zhong, Y. Han, Eng. Fail. Anal. 31 (2013) 375-386.
DOI URL |
[16] |
S.-.H. Lee, N.J. Themelis, M.J. Castaldi, J. Thermal Spray Technol. 16 (2007) 104-110.
DOI URL |
[17] |
G. Sorell, Mater. High Temp. 14 (1997) 207-220.
DOI URL |
[18] |
A.V. Weinberg, C. Varona, X. Chaucherie, D. Goeuriot, J. Poirier, Ceram. Int. 43 (2017) 5743-5750.
DOI URL |
[19] |
R.A. Rapp, Mater. Sci. Eng. 87 (1987) 319-327.
DOI URL |
[20] | J. Gonzalez-Rodriguez, S. Haro, A. Martinez-Villafane, V. Salinas-Bravo, J. Por- cayo-Calderon, Mater. Sci. Eng.: A 435 (2006) 258-265. |
[21] |
L. Shi, Y. Zhang, S. Shih, Oxidat. Metals 38 (1992) 385-405.
DOI URL |
[22] |
J. Goebel, F. Pettit, G. Goward, Metall. Trans. 4 (1973) 261-278.
DOI URL |
[23] |
L. Shi, Y. Zhang, S. Shih, Corros. Sci. 33 (1992) 1427-1438.
DOI URL |
[24] | N. Flores-Garcia, C. Arrieta-Gonzalez, J. Ramos-Hernandez, G. Pedraza-Ba- sulto, J. Gonzalez-Rodriguez, J. Porcayo-Calderon, L. Martinez-Gomez,Mate- rials (Basel) 12 (2019) 3796. |
[25] |
H. Singh, S. Singh, S. Prakash, Appl. Surf. Sci. 255 (2009) 7062-7069.
DOI URL |
[26] |
G. Goyal, H. Singh, S. Prakash, Appl. Surf. Sci. 254 (2008) 6653-6661.
DOI URL |
[27] |
E. Rocca, L. Aranda, M. Moliere, P. Steinmetz, J Mater Chem 12 (2002) 3766-3772.
DOI URL |
[28] | P. Hancock, H. Hancock, W. Caley, R. Hollingshead, Mater. Sci. Eng.: A 120 (1989) 313-318. |
[29] | M. Chen, K. Feng, M. Li, C. Zhou, Corros. Sci. (2020) 108431. |
[30] |
Y. Liu, J. Sun, Z. Pei, W. Li, J. Liu, J. Gong, C. Sun, Corros. Sci. 167 (2020) 108486.
DOI URL |
[31] | Y. Yang, Z. Liu, P. Ren, Q. Wang, Z. Bao, S. Zhu, W. Li, Corros. Sci. (2020) 108527. |
[32] |
J. Goebel, F. Pettit, Metall. Trans. 1 (1970) 1943-1954.
DOI URL |
[33] |
A. Rahmel, M. Schmidt, M. Schorr, Oxid. Metals 18 (1982) 195-223.
DOI URL |
[34] | J. Singh, H. Vasudev, S. Singh, Mater. Today (2020). |
[35] |
J. Wang, M. Chen, Y. Cheng, L. Yang, Z. Bao, L. Liu, S. Zhu, F. Wang, Corros. Sci. 123 (2017) 27-39.
DOI URL |
[36] |
Q. Fan, S. Jiang, D. Wu, J. Gong, C. Sun, Corros. Sci. 76 (2013) 373-381.
DOI URL |
[37] |
M. Guo, Q. Wang, J. Gong, C. Sun, R. Huang, L. Wen, Corros. Sci. 48 (2006) 2750-2764.
DOI URL |
[38] |
X. Ren, F. Wang, X. Wang, Surf. Coat. Technol. 198 (2005) 425-431.
DOI URL |
[39] |
N.S. Patel, V. Pavlík, M. Boˇ ca, Crit.Rev. Solid State Mater. Sci. 42 (2017) 83-97.
DOI URL |
[40] |
H.P. Nielsen, F. Frandsen, K. Dam-Johansen, L. Baxter, Prog. Energy Combust. Sci. 26 (2000) 283-298.
DOI URL |
[41] |
T. Sidhu, R. Agrawal, S. Prakash, Surf. Coat. Technol. 198 (2005) 4 41-4 46.
DOI URL |
[42] |
H. Singh, B. Sidhu, D. Puri, S. Prakash, Mater. Corrosion 58 (2007) 92-102.
DOI URL |
[43] | R.A. Rapp, in: S.D. Cramer, B.S. Covino Jr. (Eds.), Corrosion: Fundamentals, Testing, and Protection, ASM International, 2003, p. 0. |
[44] |
H.P. Michelsen, F. Frandsen, K. Dam-Johansen, O.H. Larsen, Fuel Process. Tech- nol. 54 (1998) 95-108.
DOI URL |
[45] |
A. Sarkar, R. Rano, G. Udaybhanu, A. Basu, Fuel Process. Technol. 87 (2006) 259-277.
DOI URL |
[46] |
R. Gieré, L.E. Carleton, G.R. Lumpkin, Am. Mineral. 88 (2003) 1853-1865.
DOI URL |
[47] | R.A. Rapp, K. Goto, in: ECS Proceedings Volumes, 1981, 1981, pp. 159-177. |
[48] | H. Jinyang, L. Jintao, Y. Zhen, Z. Yongli, D. Yingying, Y. Yong, in: 2018 Inter- national Conference on Power System Technology (POWERCON), IEEE, 2018, pp. 4525-4532. |
[49] |
O.H. LeBlanc, K.L. Luthra, R.W. Haskell, Oxid. Metal. 31 (1989) 393-414.
DOI URL |
[50] |
F. Pettit, Oxid. Metal. 76 (2011) 1-21.
DOI URL |
[51] |
M. Khajavi, M. Shariat, Eng. Fail. Anal. 11 (2004) 589-597.
DOI URL |
[52] |
E. Poursaeidi, M. Aieneravaie, M. Mohammadi, Eng. Fail. Anal. 15 (2008) 1111-1129.
DOI URL |
[53] | S. Rani, A.K. Agrawal, V. Rastogi, Case Stud. Eng. Failure Anal. 8 (2017) 1-10. |
[54] |
Z. Huda, Mater. Des. 30 (2009) 3121-3125.
DOI URL |
[55] |
Z. Mazur, A. Luna-Ramirez, J. Juárez-Islas, A. Campos-Amezcua, Eng. Fail. Anal. 12 (2005) 474-486.
DOI URL |
[56] |
J. Kanesund, H. Brodin, S. Johansson, Eng. Fail. Anal. 96 (2019) 118-129.
DOI |
[57] |
J. Gallardo, J. Rodrı ´guez, E. Herrera, Wear 252 (2002) 264-268.
DOI URL |
[58] |
S. Bhattacharyya, M. Das, S. Sarkar, Eng. Fail. Anal. 15 (2008) 711-722.
DOI URL |
[59] |
D. Ghosh, H. Roy, S. Ray, A. Shukla, High Temp. Mater. Processes 28 (2009) 109-114.
DOI URL |
[60] |
A. Movahedi-Rad, S. Plasseyed, M. Attarian, Eng. Fail. Anal. 48 (2015) 94-104.
DOI URL |
[61] |
K. Ranjbar, Eng. Fail. Anal. 14 (2007) 620-625.
DOI URL |
[62] |
A.-a. Malekbarmi, S. Zangeneh, A. Roshani, Eng. Fail. Anal. 18 (2011) 1262-1271.
DOI URL |
[63] | V.S. Prasad, R. Baligidad, A.A. Gokhale, in: Aerospace Materials and Material Technologies, Springer, 2017, pp. 267-288. |
[64] |
S. Panwar, P.T. UMASANKAR, K. Balasubramanian, B. Venkataraman, Bull. Mater. Sci. 39 (2016) 321-329.
DOI URL |
[65] |
G. Zhang, J. Sun, Q. Fu, Surf. Coat. Technol. 400 (2020) 126210.
DOI URL |
[66] |
D. Shores, R. John, J. Appl. Electrochem. 10 (1980) 275-283.
DOI URL |
[67] |
Y. Zhang, R.A. Rapp, J. Electrochem. Soc. 132 (1985) 734.
DOI URL |
[68] |
Y. Zhang, R.A. Rapp, J. Electrochem. Soc. 132 (1985) 2498-2501.
DOI URL |
[69] |
D.K. Gupta, R.A. Rapp, J. Electrochem. Soc. 127 (1980) 2194-2202.
DOI URL |
[70] |
P. Jose, D. Gupta, R.A. Rapp, J. Electrochem. Soc. 132 (1985) 735-737.
DOI URL |
[71] |
Y. Zhang, J. Electrochem. Soc. 133 (1986) 655.
DOI URL |
[72] |
Y. Zhang, R. Rapp, Corrosion 43 (1987) 348-352.
DOI URL |
[73] | D.Z. Shi, R.A. Rapp, J. Electrochem. Soc.;( United States) 133 (1986). |
[74] |
R.A. Rapp, Corros. Sci. 44 (2002) 209-221.
DOI URL |
[75] |
K. Luthra, Metall. Trans. A 13 (1982) 1853-1864.
DOI URL |
[76] | F. Pettit, G. Meier, M. Gell, C. Kartovich, in: JF R adovich (Ed.), Superalloys, Transactions of the Metallurgical Society of AIME, Pensylvania, Warrendale, 1984, pp. 651-687. |
[77] | F. Pettit, C. Giggins, in: Superalloys II-High Temperature Materials for Aerospace and Industrial Power, Wiley-Interscience, John Wiley and Sons, 1987, pp. 327-358. |
[78] |
Z. Cui, S. Chen, Y. Dou, S. Han, L. Wang, C. Man, X. Wang, S. Chen, Y.F. Cheng, X. Li, Corros. Sci. 150 (2019) 218-234.
DOI URL |
[79] |
S.-.J. Park, S.-.M. Seo, Y.-.S. Yoo, H.-.W. Jeong, H. Jang, Corros. Sci. 90 (2015) 305-312.
DOI URL |
[80] |
D. Caplan, M. Cohen, J. Electrochem. Soc. 108 (1961) 438.
DOI URL |
[81] |
N.N. Aung, X. Liu, Corros. Sci. 82 (2014) 227-238.
DOI URL |
[82] |
F. Gesmundo, F. Viani, Mater. Chem. Phys. 20 (1988) 513-528.
DOI URL |
[83] |
N.N. Aung, X. Liu, Corros. Sci. 76 (2013) 390-402.
DOI URL |
[84] | A. Rahmel, Mater. Corrosion 19 (1968) 750-756. |
[85] |
N. Otsuka, R.A. Rapp, J. Electrochem. Soc. 137 (1990) 46-52.
DOI URL |
[86] |
Y.M. Wu, R.A. Rapp, J. Electrochem. Soc. 138 (1991) 2683-2690.
DOI URL |
[87] |
M. Wootton, N. Birks, Corros. Sci. 12 (1972) 829-841.
DOI URL |
[88] |
V. Vasantasree, M. Hocking, Corros. Sci. 16 (1976) 261-277.
DOI URL |
[89] |
A. Hendry, D. Lees, Corros. Sci. 20 (1980) 383-404.
DOI URL |
[90] |
D.A. Shores, W. Fang, J. Electrochem. Soc. 128 (1981) 346.
DOI URL |
[91] |
R.E. Andresen, J. Electrochem. Soc. 126 (1979) 328.
DOI URL |
[92] |
P. Kofstad, G. ˚Akesson, Oxid. Metal. 14 (1980) 301-323.
DOI URL |
[93] |
R. Viswanathan, C. Spengler, Corrosion 26 (1970) 29-41.
DOI URL |
[94] |
A. Misra, D. Whittle, Oxid. Metal. 22 (1984) 1-33.
DOI URL |
[95] |
B.P. Mohanty, D.A. Shores, Corros. Sci. 46 (2004) 2893-2907.
DOI URL |
[96] |
W. Ding, H. Shi, Y. Xiu, A. Bonk, A. Weisenburger, A. Jianu, T. Bauer, Solar Energy Mater. Solar Cells 184 (2018) 22-30.
DOI URL |
[97] |
M. Mitoraj-Królikowska, E. Godlewska, Corros. Sci. 115 (2017) 18-29.
DOI URL |
[98] |
C. Sequeira, M. Hocking, Corrosion 37 (1981) 392-407.
DOI URL |
[99] |
D.A. Shores, B.P. Mohanty, Corros. Sci. 46 (2004) 2909-2924.
DOI URL |
[100] |
S. Pahlavanyali, A. Sabour, M. Hirbod, Mater. Corrosion 54 (2003) 687-693.
DOI URL |
[101] |
N. Otsuka, R.A. Rapp, J. Electrochem. Soc. 137 (1990) 53.
DOI URL |
[102] |
Z. Chen, T. Dong, W. Qu, Y. Ru, H. Zhang, Y. Pei, S. Gong, S. Li, Corros. Sci. 156 (2019) 161-170.
DOI URL |
[103] |
J. Chang, D. Wang, X. Liu, L. Lou, J. Zhang, Metall. Mater. Trans. A 49 (2018) 4343-4352.
DOI URL |
[104] | P. Song, M. Liu, X. Jiang, Y. Feng, J. Wu, G. Zhang, D. Wang, J. Dong, X.-.Q. Chen, L.Lou, Mater. Des. 197 (2021) 109197. |
[105] |
R.F. REISING, Corrosion 31 (1975) 159-163.
DOI URL |
[106] |
Y.S. Hwang, R.A. Rapp, J. Electrochem. Soc. 137 (1990) 1276-1280.
DOI URL |
[107] |
F. Han, J. Chang, H. Li, L. Lou, J. Zhang, J. Alloys Compd. 619 (2015) 102-108.
DOI URL |
[108] |
F. Weng, H. Yu, C. Chen, K. Wan, Mater. Manuf. Process. 30 (2015) 677-684.
DOI URL |
[109] | M. AU, M. Ishaq, S. Ahmad, S. Ahmad, Mater. Trans. 30 (1989) 707-716 JIM. |
[110] |
V.D. Stevanovic, M.M. Petrovic, T. Wala, S. Milivojevic, M. Ilic, S. Muszynski, Energy 187 (2019) 115980.
DOI URL |
[111] |
J. Fu, Q. Zhou, N. Li, Z. Liu, T. Liu, Corros. Sci. 104 (2016) 103-111.
DOI URL |
[112] |
J. Fu, N. Li, Q. Zhou, P. Guo, Oxid. Metal. 83 (2015) 317-333.
DOI URL |
[113] |
N. Bala, H. Singh, S. Prakash, Mater. Des. 31 (2010) 244-253.
DOI URL |
[114] |
T. Sidhu, S. Prakash, R. Agrawal, Scr. Mater. 55 (2006) 179-182.
DOI URL |
[115] | N. Bala, H. Singh, J. Karthikeyan, S. Prakash, Mater. Corrosion 64 (2013) 783-793. |
[116] | X.-m. Ou, S. Zhi, S. Min, D.-l. Zou, J. China Univ. Min. Technol. 18 (2008) 4 4 4-4 48. |
[117] |
R. Mahesh, R. Jayaganthan, S. Prakash, Mater. Chem. Phys. 111 (2008) 524-533.
DOI URL |
[118] |
C.E. Lowell, D.L. Deadmore, J.D. Whittenberger, Oxid. Metal. 17 (1982) 205-221.
DOI URL |
[119] |
C. Zhou, R. Cai, S. Gong, H. Xu, Surf. Coat. Technol. 201 (2006) 1718-1723.
DOI URL |
[120] |
P. Yuwen, C. Zhou, Corros. Sci. 112 (2016) 710-717.
DOI URL |
[121] |
T. Rhys-Jones, N. Swindells, Corrosion Sci. 25 (1985) 559-576.
DOI URL |
[122] |
K. Shirvani, M. Saremi, A. Nishikata, T. Tsuru, Corros. Sci. 45 (2003) 1011-1021.
DOI URL |
[123] |
W. Wu, A. Rahmel, M. Schorr, Oxid. Metal. 22 (1984) 59-81.
DOI URL |
[124] |
A. Firouzi, K. Shirvani, Corros. Sci. 52 (2010) 3579-3585.
DOI URL |
[125] |
Z. Tang, F. Wang, W. Wu, Intermetallics 7 (1999) 1271-1274.
DOI URL |
[126] | C. Leyens, B. Pint, I. Wright, Surf. Coat. Technol. 133 (2000) 15-22. |
[127] |
C. Jiang, Y. Yang, Z. Zhang, Z. Bao, M. Chen, S. Zhu, F. Wang, Corros. Sci. 133 (2018) 406-416.
DOI URL |
[128] |
V. Tolpygo, D. Clarke, Surf. Coat. Technol. 203 (2009) 3278-3285.
DOI URL |
[129] |
R. Liu, S. Jiang, H. Yu, J. Gong, C. Sun, Corros. Sci. 104 (2016) 162-172.
DOI URL |
[130] |
M. Qiao, C. Zhou, Corros. Sci. 63 (2012) 239-245.
DOI URL |
[131] |
X. Zhao, C. Zhou, Corros. Sci. 86 (2014) 223-230.
DOI URL |
[132] |
H. He, Z. Liu, W. Wang, C. Zhou, Corros. Sci. 100 (2015) 466-473.
DOI URL |
[133] |
Z. Liu, X. Zhao, C. Zhou, Corros. Sci. 92 (2015) 148-154.
DOI URL |
[134] |
J. He, X. Guo, Y. Qiao, F. Luo, Corros. Sci. 177 (2020) 108948.
DOI URL |
[135] |
Y. Liu, X. Guo, Progr. Natural Sci. 23 (2013) 190-197.
DOI URL |
[136] |
J. He, B. Zhang, K. Zheng, J. Feng, G. Chen, Surf. Coat. Technol. 209 (2012) 52-57.
DOI URL |
[137] | B.V. Cockeram, Surf. Coat. Technol. 76 (1995) 20-27. |
[138] |
Y. Qiao, Z. Shen, X. Guo, Corros. Sci. 93 (2015) 126-137.
DOI URL |
[139] |
J. Cheng, S. Yi, J.S. Park, J Alloys Compd 644 (2015) 975-981.
DOI URL |
[140] |
W. Wang, B. Yuan, C. Zhou, Corros. Sci. 80 (2014) 164-168.
DOI URL |
[141] |
Y. Qiao, M. Li, X. Guo, Surf. Coat. Technol. 258 (2014) 921-930.
DOI URL |
[142] |
C. Chen, C. Zhou, S. Gong, S. Li, Y. Zhang, H. Xu, Intermetallics 15 (2007) 805-809.
DOI URL |
[143] |
J. He, X. Guo, Y. Qiao, Corros. Sci. 147 (2019) 152-162.
DOI URL |
[144] |
P. Zhang, X. Guo, Corros. Sci. 71 (2013) 10-19.
DOI URL |
[145] |
Y. Qiao, J. Kong, Q. Li, X. Guo, Surf. Coat. Technol. 327 (2017) 93-100.
DOI URL |
[146] |
Z. Liu, C. Zhou, Oxid. Metal. 85 (2016) 205-217.
DOI URL |
[147] |
R. Mobarra, A. Jafari, M. Karaminezhaad, Surf. Coat. Technol. 201 (2006) 2202-2207.
DOI URL |
[148] |
I. Gurrappa, Surf. Coat. Technol. 139 (2001) 272-283.
DOI URL |
[149] |
M. Guo, Q. Wang, P. Ke, J. Gong, C. Sun, R. Huang, L. Wen, Surf. Coat. Technol. 200 (2006) 3942-3949.
DOI URL |
[150] |
Z. Bao, Q. Wang, W. Li, X. Liu, J. Gong, T. Xiong, C. Sun, Corros. Sci. 51 (2009) 860-867.
DOI URL |
[151] |
X. Ren, F. Wang, Surf. Coat. Technol. 201 (2006) 30-37.
DOI URL |
[152] |
F. Tang, L. Ajdelsztajn, J.M. Schoenung, Oxid. Metal. 61 (2004) 219-238.
DOI URL |
[153] |
J. Lu, S. Zhu, F. Wang, Surf. Coat. Technol. 205 (2011) 5053-5058.
DOI URL |
[154] |
S. Jiang, H. Li, J. Ma, C. Xu, J. Gong, C. Sun, Corros. Sci. 52 (2010) 2316-2322.
DOI URL |
[155] |
A. Yaghtin, S. Javadpour, M. Shariat, J Alloys Compd 584 (2014) 303-307.
DOI URL |
[156] |
H. Wang, D. Zuo, G. Chen, G. Sun, X. Li, X. Cheng, Corros. Sci. 52 (2010) 3561-3567.
DOI URL |
[157] |
D. Zheng, S. Zhu, F. Wang, Surf. Coat. Technol. 200 (2006) 5931-5936.
DOI URL |
[158] |
A. Keyvani, M. Saremi, M.H. Sohi, J Alloys Compd 506 (2010) 103-108.
DOI URL |
[159] |
X. Peng, S. Jiang, J. Gong, X. Sun, C. Sun, J. Mater. Sci. Technol. 32 (2016) 587-592.
DOI |
[160] |
S. Jiang, X. Peng, Z. Bao, S. Liu, Q. Wang, J. Gong, C. Sun, Corros. Sci. 50 (2008) 3213-3220.
DOI URL |
[161] |
L. Zhu, S. Zhu, F. Wang, Appl. Surf. Sci. 268 (2013) 103-110.
DOI URL |
[162] |
X. Zhong, Y. Wang, Z. Xu, Y. Zhang, J. Zhang, X. Cao, J. Eur. Ceram. Soc. 30 (2010) 1401-1408.
DOI URL |
[163] |
G. Sreedhar, M.M. Alam, V. Raja, Surf. Coat. Technol. 204 (2009) 291-299.
DOI URL |
[164] |
W. Zhou, K. Zhou, C. Deng, K. Zeng, Y. Li, Surf. Coat. Technol. 309 (2017) 849-859.
DOI URL |
[165] |
T. Sidhu, A. Malik, S. Prakash, R. Agrawal, J. Thermal Spray Technol. 16 (2007) 844-849.
DOI URL |
[166] |
W. Tillmann, I. Baumann, P. Hollingsworth, L. Hagen, J. Thermal Spray Technol. 23 (2014) 262-280.
DOI URL |
[167] |
S.S. Chatha, H.S. Sidhu, B.S. Sidhu, Surf. Coat. Technol. 206 (2012) 3839-3850.
DOI URL |
[168] |
T. Sidhu, S. Prakash, R. Agrawal, Surf. Coat. Technol. 201 (2006) 792-800.
DOI URL |
[169] |
X. Tian, X. Guo, Surf. Coat. Technol. 204 (2009) 313-318.
DOI URL |
[170] |
H. Singh, D. Puri, S. Prakash, Surf. Coat. Technol. 192 (2005) 27-38.
DOI URL |
[171] |
Y. Qiao, X. Guo, X. Li, Corros. Sci. 91 (2015) 75-85.
DOI URL |
[1] | Alejandra Rodriguez-Contreras, Miquel Punset, José A. Calero, Francisco JavierGil, Elisa Ruperez, José María Manero. Powder metallurgy with space holder for porous titanium implants: A review [J]. J. Mater. Sci. Technol., 2021, 76(0): 129-149. |
[2] | Qiaoyue Zhang, Shun-Xing Liang, Zhe Jia, Wenchang Zhang, Weimin Wang, Lai-Chang Zhang. Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons [J]. J. Mater. Sci. Technol., 2021, 61(0): 159-168. |
[3] | Shuyang Qin, Longge Yan, Xinfang Zhang. Removing prior particle boundaries in a powder superalloy based on the interaction between pulsed electric current and chain-like structure [J]. J. Mater. Sci. Technol., 2021, 87(0): 95-100. |
[4] | Jiajia Tian, Kangwei Xu, Junhua Hu, Shijie Zhang, Guoqin Cao, Guosheng Shao. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design [J]. J. Mater. Sci. Technol., 2021, 79(0): 62-74. |
[5] | Zhu Hui, Guo Dagang, Zang Hang, A.H. Hanaor Dorian, Yu Sen, Schmidt Franziska, Xu Kewei. Enhancement of hydroxyapatite dissolution through structure modification by Krypton ion irradiation [J]. J. Mater. Sci. Technol., 2020, 38(0): 148-158. |
[6] | Jufeng Huang, Guang-Ling Song, Andrej Atrens, Matthew Dargusch. What activates the Mg surface—A comparison of Mg dissolution mechanisms [J]. J. Mater. Sci. Technol., 2020, 57(0): 204-220. |
[7] | C.Q. Li, D.K. Xu, Z.R. Zhang, E.H. Han. Influence of the lithium content on the negative difference effect of Mg-Li alloys [J]. J. Mater. Sci. Technol., 2020, 57(0): 138-145. |
[8] | Wei Cui, Qibin Song, Huhu Su, Zhiqing Yang, Rui Yang, Na Li, Xing Zhang. Synergistic effects of Mg-substitution and particle size of chicken eggshells on hydrothermal synthesis of biphasic calcium phosphate nanocrystals [J]. J. Mater. Sci. Technol., 2020, 36(0): 27-36. |
[9] | B. Zhang, X.L. Ma. A review—Pitting corrosion initiation investigated by TEM [J]. J. Mater. Sci. Technol., 2019, 35(7): 1455-1465. |
[10] | Fang Xue, Xin Wei, Junhua Dong, Ini-Ibehe Nabuk Etim, Changgang Wang, Wei Ke. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34(8): 1349-1358. |
[11] | Xin Peng, Sumeng Jiang, Jun Gong, Xudong Sun, Cao Sun. Preparation and Hot Corrosion Behavior of a NiCrAlY?+?AlNiY Composite Coating [J]. J. Mater. Sci. Technol., 2016, 32(6): 587-592. |
[12] | M. Gouné, P. Maugis, J. Drillet. A Criterion for the Change from Fast to Slow Regime of Cementite Dissolution in Fe−C−Mn Steels [J]. J Mater Sci Technol, 2012, 28(8): 728-736. |
[13] | N. Arivazhagan1)y, K. Senthilkumaran, S. Narayanan, K. Devendranath Ramkumar, S. Surendra, S. Prakash. Hot Corrosion Behavior of Friction Welded AISI 4140 and AISI 304 in K2SO–60% NaCl Mixture [J]. J. Mater. Sci. Technol., 2012, 28(10): 895-904. |
[14] | H.B. Motejadded, M. Soltanieh, S. Rastegari. Dissolution Mechanism of a Zr Rich Structure in a Ni3Al Base Alloy [J]. J Mater Sci Technol, 2011, 27(10): 885-892. |
[15] | Enze Liuy Zhi Zheng Xiurong Guan Jian Tong Likui Ning Yongsi Yu. Influence of Pre-oxidation on the Hot Corrosion of DZ68 Superalloy in the Mixture of Na2SO4-NaCl [J]. J Mater Sci Technol, 2010, 26(10): 895-899. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||