J. Mater. Sci. Technol. ›› 2021, Vol. 83: 219-227.DOI: 10.1016/j.jmst.2020.12.051
• Research Article • Previous Articles Next Articles
Ying Lina, Jin Chena, Shian Donga, Guangning Wub, Pingkai Jianga, Xingyi Huanga,*()
Received:
2020-10-19
Revised:
2020-12-22
Accepted:
2020-12-22
Published:
2021-02-01
Online:
2021-02-01
Contact:
Xingyi Huang
About author:
* E-mail address: xyhuang@sjtu.edu.cn (X. Huang).Ying Lin, Jin Chen, Shian Dong, Guangning Wu, Pingkai Jiang, Xingyi Huang. Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites[J]. J. Mater. Sci. Technol., 2021, 83: 219-227.
Fig. 1. Schematic of the procedure for preparing rGO assemblies and graphene-based aerogel: (a) the structural changes from GO nanosheets to silicate-bridged GO assemblies during interfacial self-assembly; (b) AFM data for GO nanosheets; (c) the reaction for GO self-assembly in a quartz tube; (d) hybrid suspension before freeze casting; (e) the procedure for fabricating of graphene-based aerogel.
Fig. 2. Characterization of rGO assemblies by: (a) Raman spectra, (b) infrared spectra and (c) XRD analysis of GO and rGO assemblies; (d) SEM image and (e) TEM image of rGO assemblies; (f) TEM/EDS mapping of rGO assemblies, scale bars in (f2-f4) are 400 nm.
Fig. 3. Morphologies of graphene-based aerogels. SEM images of (a) 3D T-80/rGO-200 (the morphologies in a1, a2 are parallel to the freezing direction and the section in a3 is perpendicular to the freezing direction) and (b) A-200 with low filler loading (the morphologies in b1, b2 are parallel to the freezing direction and the section in b3 is perpendicular to the freezing direction); The insets in a3 and b3 are optical photographs of 3D T-80/rGO-200 and A-200, respectively, placed on a feather; (c) SEM images with different magnifications of A-200 with slightly higher filler content (sections in c1 and c2 are parallel to the freezing direction, section in c3 is perpendicular to the freezing direction).
Fig. 4. Characterization of compression-absorption-resilience properties, electrically conductive property and application of A-200. (a) Wet-resilient property of A-200; (b) Schematic of the mechanism of compression-water absorption-resilience of A-200. (c) Electrically conductive property demonstration of A-200 after compression-absorbing liquid-recovering (top), illustration of the mechanical strength of A-200 before and after compression and absorbing liquid (bottom); (d) Simplified application device based on electrical and mechanical performances of A-200.
Fig. 5. Characterization of thermally conductive performances. (a) Thermal conductivities and enhancement efficiency of pristine PDMS and composites at 1 vol.% (~2.1 wt.%) filler loading; (b) Comparison of thermal conductivities of PDMS/A-1500⊥ and other PDMS composites contained a low filler loading (≤ 5 wt.%) in previous works [[56], [57], [58],[62], [63], [64], [65], [66]]; (c) Comparison between the fitted thermal conductivities of composites based on EMT and Foygel’s models and experimental results; (d) The surface temperature variations of the lighted LED chip with time that correspond to the thermal infrared images; (e) Schematic of the structure for the LED chip integrated with TIM and heat sink; (f) Schematic diagram of the thermal resistance meter at runtime; (g) Thermal infrared images with time variation of the LED chip integrated with TIM and heat sink. Composite// and composite⊥ in (a), (c), (d), (g) represent PDMS/A-1500// and PDMS/A-1500⊥, respectively.
[1] |
R. Mo, D. Rooney, K. Sun, H.Y. Yang, Nat. Commun. 8 (2017) 13949.
DOI URL |
[2] |
G. Hu, C. Xu, Z. Sun, S. Wang, H.M. Cheng, F. Li, W. Ren, Adv. Mater. 28 (2016) 1603-1609.
DOI URL |
[3] |
G. Zhou, L. Li, C. Ma, S. Wang, Y. Shi, N. Koratkar, W. Ren, F. Li, H.M. Cheng, Nano Energy 11 (2015) 356-365.
DOI URL |
[4] |
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Adv. Mater. 27 (2015) 2049-2053.
DOI URL |
[5] |
H. Park, J.W. Kim, S.Y. Hong, G. Lee, D.S. Kim, Jh. Oh, S.W. Jin, Y.R. Jeong, S.Y. Oh, J.Y. Yun, J.S. Ha, Adv. Funct. Mater. 28 (2018), 1707013.
DOI URL |
[6] |
Y.R. Jeong, H. Park, S.W. Jin, S.Y. Hong, S.-S. Lee, J.S. Ha, Adv. Funct. Mater. 25 (2015) 4228-4236.
DOI URL |
[7] |
Y.A. Samad, Y. Li, S.M. Alhassan, K. Liao, ACS Appl. Mater. Interfaces 7 (2015) 9195-9202.
DOI URL |
[8] |
Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, J.K. Kim, ACS Appl. Mater. Interfaces 9 (2017) 9059-9069.
DOI URL |
[9] |
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Adv. Mater. 25 (2013) 1296-1300.
DOI URL |
[10] |
C. Hu, J. Xue, L. Dong, Y. Jiang, X. Wang, L. Qu, L. Dai, ACS Nano 10 (2016) 1325-1332.
DOI URL |
[11] |
L. Zhao, F. Qiang, S.W. Dai, S.C. Shen, Y.Z. Huang, N.J. Huang, G.D. Zhang, L.Z. Guan, J.F. Gao, Y.H. Song, L.C. Tang, Nanoscale 11 (2019) 10229-10238.
DOI PMID |
[12] |
J. Liang, Z. Zhao, Y. Tang, X. Hao, X. Wang, J. Qiu, Carbon 147 (2019) 206-213.
DOI URL |
[13] |
Y. Ding, T. Xu, O. Onyilagha, H. Fong, Z. Zhu, ACS Appl. Mater. Interfaces 11 (2019) 6685-6704.
DOI URL |
[14] |
N. Yousefi, X. Lu, M. Elimelech, N. Tufenkji, Nat. Nanotechnol. 14 (2019) 107-119.
DOI URL |
[15] |
N. Yousefi, K.K.W. Wong, Z. Hosseinidoust, H.O. Sorensen, S. Bruns, Y. Zheng, N. Tufenkji, Nanoscale 10 (2018) 7171-7184.
DOI URL |
[16] |
Y. Ma, M. Yu, J. Liu, X. Li, S. Li, ACS Appl. Mater. Interfaces 9 (2017) 27127-27134.
DOI URL |
[17] |
X. Zhou, Z. Liu, Chem. Commun. 46 (2010) 2611-2613.
DOI URL |
[18] |
L. Lv, P. Zhang, T. Xu, L. Qu, ACS Appl. Mater. Interfaces 9 (2017) 22885-22892.
DOI URL |
[19] |
X. Peng, K. Wu, Y. Hu, H. Zhuo, Z. Chen, S. Jing, Q. Liu, C. Liu, L. Zhong, J. Mater. Chem. A 6 (2018) 23550-23559.
DOI URL |
[20] |
F. Liu, R. Zou, N. Hu, H. Ning, C. Yan, Y. Liu, L. Wu, F. Mo, Mater. Des. 160 (2018) 377-383.
DOI URL |
[21] | Y. Liang, F. Liu, Y. Deng, Q. Zhou, Z. Cheng, P. Zhang, Y. Xiao, L. Lv, H. Liang, Q. Han, H. Shao, L. Qu, Small 14 (2018), 1801916. |
[22] |
C. Liang, H. Qiu, Y. Han, H. Gu, P. Song, L. Wang, J. Kong, D. Cao, J. Gu, J. Mater. Chem. C 7 (2019) 2725-2733.
DOI URL |
[23] |
J. Jia, X. Sun, X. Lin, X. Shen, Y.W. Mai, J.K. Kim, ACS Nano 8 (2014) 5774-5783.
DOI URL |
[24] |
P. Lv, X.-W. Tan, K.-H. Yu, R.-L. Zheng, J.-J. Zheng, W. Wei, Carbon 99 (2016) 222-228.
DOI URL |
[25] |
J. Han, G. Du, W. Gao, H. Bai, Adv. Funct. Mater. 29 (2019), 1900412.
DOI URL |
[26] |
Q. Zheng, S. Li, C. Li, Y. Lv, X. Liu, P.Y. Huang, D.A. Broido, B. Lv, D.G. Cahill, Adv. Funct. Mater. 28 (2018), 1805116.
DOI URL |
[27] |
H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Prog. Polym. Sci. 59 (2016) 41-85.
DOI URL |
[28] |
C. Tan, H. Zhu, T. Ma, W. Guo, X. Liu, X. Huang, H. Zhao, Y.Z. Long, P. Jiang, B. Sun, Nanoscale 11 (2019) 20648-20658.
DOI URL |
[29] |
J. Chen, X. Huang, Y. Zhu, P. Jiang, Adv. Funct. Mater. 27 (2017), 1604754.
DOI URL |
[30] |
H.M. Fang, Y.H. Zhao, Y.F. Zhang, Y.J. Ren, S.L. Baio, ACS Appl. Mater. Interfaces 9 (2017) 26447-26459.
DOI URL |
[31] |
X. Li, L. Shao, N. Song, L. Shi, P. Ding, Compos. Part A: Appl. Sci. Manuf. 88 (2016) 305-314.
DOI URL |
[32] |
G. Lian, C.C. Tuan, L. Li, S. Jiao, Q. Wang, K.S. Moon, D. Cui, C.P. Wong, Chem. Mater. 28 (2016) 6096-6104.
DOI URL |
[33] |
X. Zeng, Y. Yao, Z. Gong, F. Wang, R. Sun, J. Xu, C.P. Wong, Small 11 (2015) 6205-6213.
DOI URL |
[34] |
N. Song, D.J. Jiao, S.Q. Cui, X.S. Hou, P. Ding, L.Y. Shi, ACS Appl. Mater. Interfaces 9 (2017) 2924-2932.
DOI URL |
[35] |
S. Choi, D.H. Seo, M.R. Kaiser, C. Zhang, T. van der laan, Z.J. Han, A. Bendavid, X. Guo, S. Yick, A.T. Murdock, D. Su, B.R. Lee, A. Du, S.X. Dou, G. Wang, J. Mater. Chem. A 7 (2019) 4596-4603.
DOI URL |
[36] |
L.R. Shi, K. Chen, R. Du, A. Bachmatiuk, M.H. Rummeli, K.W. Xie, Y.Y. Huang, Y.F. Zhang, Z.F. Liu, J. Am. Chem. Soc. 138 (2016) 6360-6363.
DOI URL |
[37] |
X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 7 (2011) 3163-3168.
DOI URL |
[38] |
L.M. Guiney, N.D. Mansukhani, A.E. Jakus, S.G. Wallace, R.N. Shah, M.C. Hersam, Nano Lett. 18 (2018) 3488-3493.
DOI PMID |
[39] |
C. Zhu, T.Y. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Nat. Commun. 6 (2015) 6962.
DOI URL |
[40] |
Z. Zeng, Y. Zhang, X.Y.D. Ma, S.I.S. Shahabadi, B. Che, P. Wang, X. Lu, Carbon 140 (2018) 227-236.
DOI URL |
[41] | Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, X. Xue, Z. Zhang, Small 13 (2017), 1701388. |
[42] |
J. Song, C. Chen, Z. Yang, Y. Kuang, T. Li, Y. Li, H. Huang, I. Kierzewski, B. Liu, S. He, T. Gao, S.U. Yuruker, A. Gong, B. Yang, L. Hu, ACS Nano 12 (2018) 140-147.
DOI URL |
[43] |
C. Jia, C. Chen, Y. Kuang, K. Fu, Y. Wang, Y. Yao, S. Kronthal, E. Hitz, J. Song, F. Xu, B. Liu, L. Hu, Adv. Mater. 30 (2018), 1801347.
DOI URL |
[44] | C. Wang, Z.Z. Pan, W. Lv, B. Liu, J. Wei, X. Lv, Y. Luo, H. Nishihara, Q.H. Yang, Small 15 (2019), 1805363. |
[45] |
X.H. Li, P. Liu, X. Li, F. An, P. Min, K.N. Liao, Z.Z. Yu, Carbon 140 (2018) 624-633.
DOI URL |
[46] |
J. Xiao, W. Lv, Y. Song, Q. Zheng, Chem. Eng. J. 338 (2018) 202-210.
DOI URL |
[47] | H. Jin, Y. Bu, J. Li, J. Liu, X. Fen, L. Dai, J. Wang, J. Lu, S. Wang, Adv. Mater. (2018), 1707424. |
[48] |
J. Chen, Y. Li, L. Huang, C. Li, G. Shi, Carbon 81 (2015) 826-834.
DOI URL |
[49] |
O.T. Picot, V.G. Rocha, C. Ferraro, N. Ni, E. D’Elia, S. Meille, J. Chevalier, T. Saunders, T. Peijs, M.J. Reece, E. Saiz, Nat. Commun. 8 (2017) 14425.
DOI URL |
[50] |
M. Copuroglu, H. Sezen, R.L. Opila, S. Suzer, ACS Appl. Mater. Interfaces 5 (2013) 5875-5881.
DOI URL |
[51] |
Y.X. Wang, S.L. Chou, H.K. Liu, S.X. Dou, Carbon 57 (2013) 202-208.
DOI URL |
[52] |
B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti, L. Bergstrom, Nat. Nanotechnol. 10 (2015) 277-283.
DOI PMID |
[53] | N. Sheng, R. Zhu, T. Nomura, Z. Rao, C. Zhu, Y. Aoki, H. Habazaki, T. Akiyama, Sol. Energy Mater. Sol. Cells 206 (2020), 110280. |
[54] |
X. Chen, D. Lai, B. Yuan, M.L. Fu, Carbon 143 (2019) 897-907.
DOI URL |
[55] |
Y. Lin, J. Chen, P. Jiang, X. Huang, Chem. Eng. J. 389 (2020), 123467.
DOI URL |
[56] |
E.C. Cho, C.W. Chang-Jian, Y.S. Hsiao, K.C. Lee, J.H. Huang, Compos. Part A: Appl. Sci. Manuf. 90 (2016) 678-686.
DOI URL |
[57] |
Y.H. Zhao, Z.K. Wu, S.L. Bai, Compos. Part A: Appl. Sci. Manuf. 72 (2015) 200-206.
DOI URL |
[58] |
Q. Zhang, X. Xu, H. Li, G. Xiong, H. Hu, T.S. Fisher, Carbon 93 (2015) 659-670.
DOI URL |
[59] |
C.W. Nan, R. Birringer, D.R. Clarke, H. Gleiter, J. Appl. Phys. 81 (1997) 6692-6699.
DOI URL |
[60] | M. Foygel, R.D. Morris, D. Anez, S. French, V.L. Sobolev, Phys. Rev. B 71 (2005), 104201. |
[61] |
J. Chen, X. Huang, B. Sun, Y. Wang, Y. Zhu, P. Jiang, ACS Appl. Mater. Interfaces 9 (2017) 30909-30917.
DOI URL |
[62] |
J. Wei, M. Liao, A. Ma, Y. Chen, Z. Duan, X. Hou, M. Li, N. Jiang, J. Yu, Compos. Commun. 17 (2020) 141-146.
DOI URL |
[63] |
C. Shen, H. Wang, T. Zhang, Y. Zeng, J. Mater. Sci. Technol. 35 (2019) 36-43.
DOI URL |
[64] |
Y.H. Zhao, Y.F. Zhang, Z.K. Wu, S.L. Bai, Compos. B: Eng. 84 (2016) 52-58.
DOI URL |
[65] |
K.T.S. Kong, M. Mariatti, A.A. Rashid, J.J.C. Busfield, Compos. B: Eng. 58 (2014) 457-462.
DOI URL |
[66] |
Y.H. Zhao, Y.F. Zhang, S.L. Bai, Compos. Part A: Appl. Sci. Manuf. 85 (2016) 148-155.
DOI URL |
[1] | Jin Li, Qin Wang, Lei Zheng, Hongbo Liu. A novel graphene aerogel synthesized from cellulose with high performance for removing MB in water [J]. J. Mater. Sci. Technol., 2020, 41(0): 68-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||