J. Mater. Sci. Technol. ›› 2021, Vol. 72: 104-113.DOI: 10.1016/j.jmst.2020.08.041
• Research Article • Previous Articles Next Articles
Rui Jianga, Shengnan Qiana, Chuang Donga,c,*(), Ying Qina, Yujuan Wub, Jianxin Zoub, Xiaoqin Zengb
Received:
2020-02-22
Revised:
2020-08-19
Accepted:
2020-04-19
Published:
2021-05-10
Online:
2021-05-10
Contact:
Chuang Dong
About author:
* Key Laboratory of Materials Modification (Ministry ofEducation), School of Material Science and Engineering, Dalian University of Tech-nology, Dalian 116024, China. E-mail address: dong@djut.edu.cn (C. Dong).Rui Jiang, Shengnan Qian, Chuang Dong, Ying Qin, Yujuan Wu, Jianxin Zou, Xiaoqin Zeng. Composition optimization of high-strength Mg-Gd-Y-Zr alloys based on the structural unit of Mg-Gd solid solution[J]. J. Mater. Sci. Technol., 2021, 72: 104-113.
Fig. 1. Correlation between tensile strength (in color depth) and Mg-Gd-Y alloy compositions. Most of the existing alloys fall close to a composition line (dotted line) of Gd/Y = 2/1, along which seven compositions (marked with dot symbols) are designed in the present work and following experimental results are marked with star symbols.
Fig. 2. Pair distribution function (a) and corresponding effective electronic potentialφ(r)∝-sin(2kF r)/ r3 arising from Friedel oscillation (b). The central positions of the negative (red-shaded) and positive (green shaded) potential zones are labeled with rn and rn+0.5, respectively. The radial distance r is scaled with Friedel wavelength λFr.
Central atom | The nearest neighbor shells | Number of atoms | The distance(nm) between Gd and Mg |
---|---|---|---|
Gd | Mg1 | 4 | 0.3274 |
Mg2 | 6 | 0.3517 | |
Mg3 | 4 | 0.3305 |
Table 1 Structure data of [Gd-Mg14] in Mg5Gd phase, where the nearest neighbor Mg atoms are distributed at three shells.
Central atom | The nearest neighbor shells | Number of atoms | The distance(nm) between Gd and Mg |
---|---|---|---|
Gd | Mg1 | 4 | 0.3274 |
Mg2 | 6 | 0.3517 | |
Mg3 | 4 | 0.3305 |
Designed | Experimental | |||
---|---|---|---|---|
{Gd}n{Mg}m | Weight% | Formulas | {Gd}n{Mg}m | Remark |
{Gd}3{Mg}1 | Mg-13.5Gd-3.3Y-0.2Zr | 3[Gd0.70Y0.30-Mg12]Mg4.98Zr0.05 + 2{Mg} | {Gd}3{Mg}2 | GW133K |
{Gd}3{Mg}2 | Mg-11.6Gd-2.7Y-0.3Zr | 1[Gd0.69Y0.29-Mg12]Mg4.99Zr0.03 + 1{Mg} | {Gd}1{Mg}1 | GW123K |
{Gd}1{Mg}1 | Mg-10.1Gd-3.3Y-0.9Zr | 1[Gd0.60Y0.35-Mg12]Mg4.86Zr0.09 + 1{Mg} | {Gd}1{Mg}1 | GW103K |
{Gd}2{Mg}3 | Mg-9.1Gd-2.8Y-0.5Zr | 3[Gd0.61Y0.34-Mg12]Mg4.99Zr0.06 + 4{Mg} | {Gd}3{Mg}4 | GW93K |
{Gd}1{Mg}2 | Mg-7.3Gd-2.1Y-0.3Zr | 1[Gd0.62Y0.31-Mg12]Mg5.03Zr0.05 + 2{Mg} | {Gd}1{Mg}2 | GW72K |
{Gd}1{Mg}3 | Mg-5.9Gd-1.6Y-0.4Zr | 1[Gd0.64Y0.31-Mg12]Mg4.97Zr0.07 + 3{Mg} | {Gd}1{Mg}3 | GW62K |
{Gd}1{Mg}4 | Mg-6.0Gd-0.7Y-0.5Zr | 1[Gd0.91Y0.16-Mg12]Mg4.91Zr0.11 + 4{Mg} | {Gd}1{Mg}4 | GW61K |
Table 2 The designed composition and experimental composition of seven cast alloys and corresponding formulas.
Designed | Experimental | |||
---|---|---|---|---|
{Gd}n{Mg}m | Weight% | Formulas | {Gd}n{Mg}m | Remark |
{Gd}3{Mg}1 | Mg-13.5Gd-3.3Y-0.2Zr | 3[Gd0.70Y0.30-Mg12]Mg4.98Zr0.05 + 2{Mg} | {Gd}3{Mg}2 | GW133K |
{Gd}3{Mg}2 | Mg-11.6Gd-2.7Y-0.3Zr | 1[Gd0.69Y0.29-Mg12]Mg4.99Zr0.03 + 1{Mg} | {Gd}1{Mg}1 | GW123K |
{Gd}1{Mg}1 | Mg-10.1Gd-3.3Y-0.9Zr | 1[Gd0.60Y0.35-Mg12]Mg4.86Zr0.09 + 1{Mg} | {Gd}1{Mg}1 | GW103K |
{Gd}2{Mg}3 | Mg-9.1Gd-2.8Y-0.5Zr | 3[Gd0.61Y0.34-Mg12]Mg4.99Zr0.06 + 4{Mg} | {Gd}3{Mg}4 | GW93K |
{Gd}1{Mg}2 | Mg-7.3Gd-2.1Y-0.3Zr | 1[Gd0.62Y0.31-Mg12]Mg5.03Zr0.05 + 2{Mg} | {Gd}1{Mg}2 | GW72K |
{Gd}1{Mg}3 | Mg-5.9Gd-1.6Y-0.4Zr | 1[Gd0.64Y0.31-Mg12]Mg4.97Zr0.07 + 3{Mg} | {Gd}1{Mg}3 | GW62K |
{Gd}1{Mg}4 | Mg-6.0Gd-0.7Y-0.5Zr | 1[Gd0.91Y0.16-Mg12]Mg4.91Zr0.11 + 4{Mg} | {Gd}1{Mg}4 | GW61K |
Fig. 5. Microstructures of the Mg-Gd-Y-Zr alloys in as-cast state (a (OM), b (SEM)) and after solution heat treatment (c (OM), d (SEM)). GW62 K, GW72 K, GW93 K, and GW103 K are heated to 525℃ for 6 h and GW133 K, GW123 K and GW61 K are heated to 500 ℃ for 6 h.
Fig. 6. XRD patterns of as-cast Mg-Gd-Y-Zr alloys (a) and Mg-Gd-Y-Zr alloys after solution heat treatment (b), where the standard phase is Mg (PDF#35-0821) and Mg24Y5 (PDF#65-7687), respectively.
Fig. 7. Grain sizes of Mg-Gd-Y-Zr alloys after solution heat treatments as functions of solution heating temperature (red and black lines represent 525 °C and 500 °C, respectively), holding time (square, circle and triangle represent 6, 12 and 18 h, respectively), and the content of (Gd + Y) and Zr.
Alloys | Incubation period (h) | Time to peak hardness (h) | Peak hardness (HV) | |||
---|---|---|---|---|---|---|
200 ℃ | 225 ℃ | 200 ℃ | 225 ℃ | 200 ℃ | 225 ℃ | |
GW61K | 8 | 16 | 128 | 128 | 89.3 (3.4) | 75.2 (3.6) |
GW62K | 8 | 16 | 64 | 64 | 93.5 (3.2) | 83.0 (4.6) |
GW72K | 8 | 2 | 64 | 64 | 114.0 (3.9) | 101.6 (4.5) |
GW93K | 2 | 0 | 64 | 32 | 127.0 (4.1) | 121.4 (4.8) |
GW103K | 2 | 0 | 64 | 32 | 135.2 (3.1) | 133.1 (3.6) |
GW123K | 2 | 0 | 64 | 32 | 135.4 (3.3) | 133.4 (3.0) |
GW133K | 2 | 0 | 64 | 32 | 143.0 (4.2) | 139.2 (3.5) |
Table 3 Incubation period, time to peak hardness and hardness during ageing at 200 and 225 ℃.
Alloys | Incubation period (h) | Time to peak hardness (h) | Peak hardness (HV) | |||
---|---|---|---|---|---|---|
200 ℃ | 225 ℃ | 200 ℃ | 225 ℃ | 200 ℃ | 225 ℃ | |
GW61K | 8 | 16 | 128 | 128 | 89.3 (3.4) | 75.2 (3.6) |
GW62K | 8 | 16 | 64 | 64 | 93.5 (3.2) | 83.0 (4.6) |
GW72K | 8 | 2 | 64 | 64 | 114.0 (3.9) | 101.6 (4.5) |
GW93K | 2 | 0 | 64 | 32 | 127.0 (4.1) | 121.4 (4.8) |
GW103K | 2 | 0 | 64 | 32 | 135.2 (3.1) | 133.1 (3.6) |
GW123K | 2 | 0 | 64 | 32 | 135.4 (3.3) | 133.4 (3.0) |
GW133K | 2 | 0 | 64 | 32 | 143.0 (4.2) | 139.2 (3.5) |
Fig. 10. XRD patterns of specimens after peak ageing at 200 (a) and 225 ℃ (b), where the standard phase is Mg (PDF#35-0821) and Mg24Y5 (PDF#65-7687), respectively.
Alloys | State | HV | σ0.2 (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|---|---|
GW133K | |||||
As-cast | 104 | 209 | 251 | 0.47 | |
T4-500 ℃-6 h | 102.8 | 192 | 257 | 1.61 | |
T6-200 ℃-64 h | 143 | 230 | 230 | 0.14 | |
T6-225 ℃-32 h | 139.2 | 271 (78) | 274 (17) | 0.22 | |
GW123K | |||||
As-cast | 92.9 | 169 | 259 | 3.52 | |
T4-500 ℃-6 h | 88 | 185 | 252 | 4.88 | |
T6-200 ℃-64 h | 135.2 | 259 (74) | 314 (62) | 0.48 | |
T6-225 ℃-32 h | 133 | 241 (56) | 331 (79) | 0.82 | |
GW103K | |||||
As-cast | 91.8 | 166 | 238 | 1.76 | |
T4-500 ℃-6 h | 88.3 | 153 | 247 | 6.37 | |
T6-200 ℃-64 h | 135.2 | 248 (95) | 315 (68) | 0.55 | |
T6-225 ℃-32 h | 133 | 230 (77) | 347 (100) | 1.02 | |
GW93K | |||||
As-cast | 82.4 | 176 | 234 | 6 | |
T4-500 ℃-6 h | 78.8 | 138 | 210 | 6.72 | |
T6-200 ℃-64 h | 127 | 208 (70) | 318 (118) | 1.15 | |
T6-225 ℃-32 h | 121.4 | 220 (82) | 327 (117) | 1.79 | |
GW72K | |||||
As-cast | 75.2 | 130 | 232 | 13.2 | |
T4-500 ℃-6 h | 70.2 | 68 | 157 | 6.81 | |
T6-200 ℃-64 h | 114 | 183 (115) | 244 (87) | 1.31 | |
T6-225 ℃-32 h | 101.6 | 170 (102) | 245 (88) | 2.18 | |
GW62K | |||||
As-cast | 69.8 | 89 | 212 | 15.6 | |
T4-500 ℃-6 h | 65.5 | 93 | 185 | 14.35 | |
T6-200 ℃-64 h | 93.5 | 185 (92) | 305 (120) | 8.86 | |
T6-225 ℃-32 h | 95 | 114 (21) | 209 (24) | 16.65 | |
GW61K | |||||
As-cast | 61.4 | 107 | 213 | 18.28 | |
T4-500 ℃-6 h | 57.1 | 86 | 196 | 18.38 | |
T6-200 ℃-64 h | 89.3 | 199 (113) | 297 (101) | 10.6 | |
T6-225 ℃-32 h | 75.2 | 111 (25) | 205 (9) | 16.65 |
Table 4 Room temperature mechanical properties of the studied Mg-Gd-Y-Zr alloys.
Alloys | State | HV | σ0.2 (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|---|---|
GW133K | |||||
As-cast | 104 | 209 | 251 | 0.47 | |
T4-500 ℃-6 h | 102.8 | 192 | 257 | 1.61 | |
T6-200 ℃-64 h | 143 | 230 | 230 | 0.14 | |
T6-225 ℃-32 h | 139.2 | 271 (78) | 274 (17) | 0.22 | |
GW123K | |||||
As-cast | 92.9 | 169 | 259 | 3.52 | |
T4-500 ℃-6 h | 88 | 185 | 252 | 4.88 | |
T6-200 ℃-64 h | 135.2 | 259 (74) | 314 (62) | 0.48 | |
T6-225 ℃-32 h | 133 | 241 (56) | 331 (79) | 0.82 | |
GW103K | |||||
As-cast | 91.8 | 166 | 238 | 1.76 | |
T4-500 ℃-6 h | 88.3 | 153 | 247 | 6.37 | |
T6-200 ℃-64 h | 135.2 | 248 (95) | 315 (68) | 0.55 | |
T6-225 ℃-32 h | 133 | 230 (77) | 347 (100) | 1.02 | |
GW93K | |||||
As-cast | 82.4 | 176 | 234 | 6 | |
T4-500 ℃-6 h | 78.8 | 138 | 210 | 6.72 | |
T6-200 ℃-64 h | 127 | 208 (70) | 318 (118) | 1.15 | |
T6-225 ℃-32 h | 121.4 | 220 (82) | 327 (117) | 1.79 | |
GW72K | |||||
As-cast | 75.2 | 130 | 232 | 13.2 | |
T4-500 ℃-6 h | 70.2 | 68 | 157 | 6.81 | |
T6-200 ℃-64 h | 114 | 183 (115) | 244 (87) | 1.31 | |
T6-225 ℃-32 h | 101.6 | 170 (102) | 245 (88) | 2.18 | |
GW62K | |||||
As-cast | 69.8 | 89 | 212 | 15.6 | |
T4-500 ℃-6 h | 65.5 | 93 | 185 | 14.35 | |
T6-200 ℃-64 h | 93.5 | 185 (92) | 305 (120) | 8.86 | |
T6-225 ℃-32 h | 95 | 114 (21) | 209 (24) | 16.65 | |
GW61K | |||||
As-cast | 61.4 | 107 | 213 | 18.28 | |
T4-500 ℃-6 h | 57.1 | 86 | 196 | 18.38 | |
T6-200 ℃-64 h | 89.3 | 199 (113) | 297 (101) | 10.6 | |
T6-225 ℃-32 h | 75.2 | 111 (25) | 205 (9) | 16.65 |
Fig. 13. Relative change of lattice parameters a (a) and c (b) and unit cell volume (c) of matrix Mg solid solution in the states of T4 to peak T6 at 200 ℃ and 225 ℃.
[1] |
B.L. Mordike, Mater. Sci. Eng. A 324 (1) (2002) 103-112.
DOI URL |
[2] |
F.S. Pan, M.B. Yang, X.H. Chen, J. Mater. Sci. Technol. 32 (2016) 1211-1221.
DOI URL |
[3] |
M. Hakamada, T. Furuta, Y. Chino, Y. Chen, H. Kusuda, M. Mabuchi, Energy 32 (2007) 1352-1360.
DOI URL |
[4] |
N. Stanford, D. Atwell, A. Beer, C. Davies, M.R. Barnett, Scr. Mater. 59 (2008) 772-775.
DOI URL |
[5] | Y. Huang, W. Gan, K.U. Kainer, N. Hort, J. Magnes, Alloy 2 (2014) 1-7. |
[6] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[7] | P.H. Fu, L.M. Peng, H.Y. Jiang, W.J. Ding, C.Q. Zhai, China Foundry 11 (4) (2014) 277-286. |
[8] |
I.A. Anyanwu, S. Kamado, Y. Kojima, Mater. Trans. 42 (2001) 1206-1211.
DOI URL |
[9] | L.K. Jiang, W.C. Liu, G.H. Wu, W.J. Ding, Mater. Sci. Eng. A-Struct.Mater. Prop. Micros. Pro. 612 (2014) 293-301. |
[10] | L.L. Rokhlin, N.I. Nikitina, Zeitschrift Fur Metallkunde 85 (1994) 819-823. |
[11] |
S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, J. Alloys Compd. 427 (2007) 316-323.
DOI URL |
[12] |
S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, J. Alloys Compd. 421 (2006) 309-313.
DOI URL |
[13] |
J.F. Nie, Scr. Mater. 48 (8) (2003) 1009-1015.
DOI URL |
[14] | H.R.J. Nodooshan, W.C. Liu, G.H. Wu, Y. Rao, C.X. Zhou, S.P. He, W.J. Ding, R. Mahmudi, Mater. Sci. Eng. A-Struct. Mater. Prop. Micros. Proc. 615 (2014) 79-86. |
[15] | J. Wang, J. Meng, D.P. Zhang, D.X. Tang, Mater. Sci. Eng. A-Struct.Mater. Prop. Micros. Proc. 456 (2007) 78-84. |
[16] | J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, M.L. Zhang, J. Magnes, Alloy 6 (2018) 277-291. |
[17] | J.F. Nie, Metall. Mater. Tran. A-Phys.Metall. Mater. Sci. 43a (2012) 3891-3939. |
[18] | D.H. Stjohn, M.A. Easton, M. Qian, J.A. Taylor, Metall. Mater. Tran. A-Phys.Metall. Mater. Sci. 44a (2013) 2935-2949. |
[19] | S. Kamado, Y. Kojima, R. Ninomiya, K. Kubota, Proceedings of the Third International Magnesium Conference, Manchester, UK, 1996, 10-12 April. |
[20] | H. Shangming, Shanghai Jiao Tong University, 2007 (in Chinese). |
[21] |
S.N. Qian, C. Dong, T.Y. Liu, Y. Qin, Q. Wang, Y.J. Wu, L.D. Gu, J.X. Zou, X.W. Heng, L.M. Peng, X.Q. Zeng, J. Mater. Sci. Technol. 34 (2018) 1132-1141.
DOI URL |
[22] | C. Dong, Q. Wang, J.B. Qiang, Y.M. Wang, N. Jiang, G. Han, Y.H. Li, J. Wu, J.H. Xia, J. Phys. D Appl. Phys. 40 (2007) R273-R291. |
[23] |
L.J. Luo, H. Chen, Y.M. Wang, J.B. Qiang, Q. Wang, C. Dong, P. Haussler, Philos Mag 94 (2014) 2520-2540.
DOI URL |
[24] |
G. Han, J.B. Qiang, F.W. Li, L. Yuan, S.G. Quan, Q. Wang, Y.M. Wang, C. Dong, P. Haussler, Acta Mater. 59 (2011) 5917-5923.
DOI URL |
[25] | D.D. Dong, Composition Origin of Metallic Glasses and Solid Solution Alloys: Short-range-order Structural Unit, Ph.D. Thesis, Dalian University of Technology, 2017 (in Chinese). |
[26] | D.D. Dong, C. Dong, Q. Wang, Acta Metall. Sin. 54 (2) (2018) 293-300 (in Chinese). |
[27] |
J. Friedel, Adv. Phys. 3 (1954) 446-507.
DOI URL |
[28] | J. Barzola-Quiquia, M. Lang, D. Decker, P. Haussler, J. Non-Cryst. Solids 334 (2004) 352-355. |
[29] |
B.B. Jiang, Q. Wang, C. Dong, P.K. Liaw, Sci. Rep. 9 (2019) 3404.
DOI URL |
[30] |
S. Zhang, C. Dong, Mater. Lett. 233 (2018) 71-73.
DOI URL |
[31] |
A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829.
DOI URL |
[32] |
H. Abrams, Metallography 4 (1971) 59-78.
DOI URL |
[33] |
K.Y. Zheng, J. Dong, X.Q. Zeng, W.J. Ding, Mater. Sci. Technol. 24 (2008) 320-326.
DOI URL |
[34] |
Q.M. Peng, Y.D. Huang, J.A. Meng, Y.D. Li, K.U. Kainer, Intermetallics 19 (2011) 382-389.
DOI URL |
[35] |
S.M. Zhu, J.F. Nie, M.A. Gibson, M.A. Eastona, Scr. Mater. 77 (2014) 21-24.
DOI URL |
[36] |
J.L. Li, R.S. Chen, W. Ke, Trans. Nonferr. Met. Soc. China 21 (4) (2011) 761-766.
DOI URL |
[1] | Shengnan Qian, Chuang Dong, Tianyu Liu, Ying Qin, Qing Wang, Yujuan Wu, Lidong Gu, Jianxin Zou, Xiangwen Heng, Liming Peng, Xiaoqin Zeng. Solute-homogenization model and its experimental verification in Mg-Gd-based alloys [J]. J. Mater. Sci. Technol., 2018, 34(7): 1132-1141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||