J. Mater. Sci. Technol. ›› 2021, Vol. 60: 90-104.DOI: 10.1016/j.jmst.2020.06.003
• Research Article • Previous Articles Next Articles
Jiuchuan Guoa, Shuqin Chenb,c, Jinhong Guoa,*(), Xing Mab,c,*(
)
Received:
2020-02-27
Revised:
2020-04-21
Accepted:
2020-05-04
Published:
2021-01-10
Online:
2021-01-25
Contact:
Jinhong Guo,Xing Ma
Jiuchuan Guo, Shuqin Chen, Jinhong Guo, Xing Ma. Nanomaterial Labels in Lateral Flow Immunoassays for Point-of-Care-Testing[J]. J. Mater. Sci. Technol., 2021, 60: 90-104.
Cost-effective | Stability | Quantitative detection | Environmentally friendly | Easy operation | |
---|---|---|---|---|---|
AuNPs | *** | *** | * | ** | *** |
QDs | ** | ** | ** | * | ** |
UCPs | ** | *** | *** | ** | * |
TRFNPs | * | ** | *** | ** | * |
SERS NPs | * | ** | *** | ** | * |
MNPs | ** | ** | *** | ** | ** |
CNPs | *** | *** | ** | *** | *** |
Table 1 Physical parameters comparisons among each nanoparticles
Cost-effective | Stability | Quantitative detection | Environmentally friendly | Easy operation | |
---|---|---|---|---|---|
AuNPs | *** | *** | * | ** | *** |
QDs | ** | ** | ** | * | ** |
UCPs | ** | *** | *** | ** | * |
TRFNPs | * | ** | *** | ** | * |
SERS NPs | * | ** | *** | ** | * |
MNPs | ** | ** | *** | ** | ** |
CNPs | *** | *** | ** | *** | *** |
Components | Functions | Material |
---|---|---|
Sample pad | Dispersing the liquid sample to uniformly and controllably flow into the conjugate pad | Cellulose film, polyester fiber film, glass cellulose film, etc. |
Conjugate pad | Serving as a carrier for storing and delivering labeled antibody conjugates | Cellulose film, polyester fiber film, glass cellulose film, etc. |
NC membrane | Place of immune response and signal detection | Nitrocellulose membrane |
Absorption pad | Absorbing sample liquid that flows through | Plant fiber filter paper |
Table 2 Components of LFIA test strips.
Components | Functions | Material |
---|---|---|
Sample pad | Dispersing the liquid sample to uniformly and controllably flow into the conjugate pad | Cellulose film, polyester fiber film, glass cellulose film, etc. |
Conjugate pad | Serving as a carrier for storing and delivering labeled antibody conjugates | Cellulose film, polyester fiber film, glass cellulose film, etc. |
NC membrane | Place of immune response and signal detection | Nitrocellulose membrane |
Absorption pad | Absorbing sample liquid that flows through | Plant fiber filter paper |
Fig. 2. Comparison between the PEG-modified AuNPs and regular citrate AuNPs in binding mechanism. (Reprinted with permission from [31]. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
Fig. 3. SPALS-based LFIA system schematic: (a) The smartphone-based optical reader; (b) The working principle of the SPALS-based LFIA system. (c) In the case that the transmitted light intensity was low; (d) In the case that the transmitted light intensity was high. (Reprinted with permission from [37] Copyright 2018 Elsevier B.V.).
Fig. 4. (a) Evolution of the absorption photoluminescent spectra upon consecutive change of CdxZn1 - xS. (b) Evolution of the quantum yields upon number of shell monolayer. (c) Evolution of the photoluminescent quantum yields upon repeated precipitation of ZnSe/3CdSe (black squares) and ZnSe/3CdSe/CdxZn1 - xS/ZnS (red dots) core/shell QDs. (Reprinted with permission from [58] Copyright 2011 IOP).
Fig. 5. Principles of the formation process of pitaya-type silica spheres embedded with QDs. (Reprinted with permission from [62] Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
Fig. 7. Schematic illustration of the process of synthesizing Ca2+ doped core/shell UCPs. (Reprinted with permission from [79] Copyright 2018 Elsevier).
Fig. 8. Schematic illustration of the UCPs based ten-channel LFIA disc. (Reprinted with permission from [87]. Copyright 2019 Springer Nature Publishing AG).
Fig. 9. Schematic of TRFIA labelling technology based on magnetic particles for the simultaneous detection of AFP and hCG. (Reprinted with permission from [95] Copyright The Royal Society of Chemistry 2013).
Fig. 10. a) The illustration of preparation process of flower-like gold nanoparticles. b) The structure of the SERS-LFIA strip and the principle of competitive detecting format. (Reprinted with permission from [108] Copyright Springer-Verlag Wien 2017).
Fig. 11. Comparison among four kinds of SERS labels in terms of photograph and optical intensities. (Reprinted with permission from [111] Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018).
Fig. 12. Portable Raman reader for SERS-LFIA testing. (a) Schematic representation of the setup (b) SERS detecting results on the test strips. (c) The size of the 785 nm diode laser. (Reprinted with permission from [115]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim).
Fig. 13. The ELISA results of potato leaf extracts. A comparison between double-enhanced LFIA and the conventional LFIA. (Reprinted with permission from [131] Copyright 2018 Elsevier).
Fig. 14. Principle of “Road Closure” for Bacillus anthracis spores’ detection in LFIA. (Reprinted with permission from [134] Copyright 2015 Elsevier).
Fig. 15. Principle illustration of MWCNT-based LFB for the detection of DNA sequence. (Reprinted with permission from [142] Copyright 2014 Elsevier B.V.).
Target Analyte | Detection Sensitivity and Quantitative Range | ||||
---|---|---|---|---|---|
Gold Standard (CG-LFIAs) | FLFIAs (QDs, UCPs, TRFNPs) | SERS-LFIAs | MLFIAs | CLFIAs | |
ENR | 0.138 μg/kg, none | 1 μg/L, none (QDs) | |||
AIV | AIV(NDV) sample diluted to 2-12 (2-10), none | 0.09 ng/mL, 0.27-12 ng/mL (QDs) | |||
DON | 100 μg/kg, none | 50 μg/kg, none (QDs) | 20 μg/kg, 18.75 - 600 μg/kg | ||
ZEN | 20 ng/mL, 5-200 ng/mL | 59.15 pg/mL, 0.1-15 ng/mL (QDs) | 1 μg/kg 0.938 - 30 μg/kg | ||
AFB1 | 0.5 ng/mL, none | 1.65 pg/mL, 2-300 pg/mL (QDs) | |||
0.03 ng/mL, 0.03-1000 ng/mL (UCPs) | |||||
V. cholerae O139 | 1 cfu/mL, none | 104 CFU/mL, 105-108 CFU/mL (UCPs) | |||
PVX | 0.3 ng/mL, 0.3-80 ng/mL | 0.25 ng/mL, 0.25-16 ng /mL | |||
AFP | 0.3 ng/mL, none | 0.05 ng/mL, 0.1-750 ng/mL (TRFNPs) | |||
hCG | 2.3 mIU/mL, 10-120 mIU/mL | 10 pg/100 μl, none (UCPs) | 1.6 mIU/mL, 1.6-1679 mIU/mL | 45.6 mIU/mL, 45.6-230 mIU/mL | |
0.08 ng/mL, 0.16-450 ng/mL (TRFNPs) | |||||
CEA | 4.6 pg/mL, 0.01-50 ng/mL | 0.35 ng/mL, 2.8-680 ng/mL (QDs) | 0.045 ng/mL, 0.045-100 ng/mL | ||
NEO | 100 ng/mL, 0-50 ng/mL | 0.37 pg/mL, 1-1000 pg/mL | |||
RAC | 40.1 pg/mL, 25-2500 pg/mL | 23.6 pg/mL, 25-2500 pg/mL (QDs) | |||
7.2 pg/mL, 5-2500 pg/mL (TRFNPs) | |||||
SEB | 1ng/mL, none | 0.001 ng/mL, none | |||
L. monocytogenes | 3.9 × 105 CFU/mL, none | 19 CFU/mL, 19-1.9 × 104 CFU/mL | 3.5 × 103 CFU/mL, none |
Table 3 Comparison between CG-LFIAs and alternate nanoparticles labelled LFIAs in terms of sensitivity and quantification.
Target Analyte | Detection Sensitivity and Quantitative Range | ||||
---|---|---|---|---|---|
Gold Standard (CG-LFIAs) | FLFIAs (QDs, UCPs, TRFNPs) | SERS-LFIAs | MLFIAs | CLFIAs | |
ENR | 0.138 μg/kg, none | 1 μg/L, none (QDs) | |||
AIV | AIV(NDV) sample diluted to 2-12 (2-10), none | 0.09 ng/mL, 0.27-12 ng/mL (QDs) | |||
DON | 100 μg/kg, none | 50 μg/kg, none (QDs) | 20 μg/kg, 18.75 - 600 μg/kg | ||
ZEN | 20 ng/mL, 5-200 ng/mL | 59.15 pg/mL, 0.1-15 ng/mL (QDs) | 1 μg/kg 0.938 - 30 μg/kg | ||
AFB1 | 0.5 ng/mL, none | 1.65 pg/mL, 2-300 pg/mL (QDs) | |||
0.03 ng/mL, 0.03-1000 ng/mL (UCPs) | |||||
V. cholerae O139 | 1 cfu/mL, none | 104 CFU/mL, 105-108 CFU/mL (UCPs) | |||
PVX | 0.3 ng/mL, 0.3-80 ng/mL | 0.25 ng/mL, 0.25-16 ng /mL | |||
AFP | 0.3 ng/mL, none | 0.05 ng/mL, 0.1-750 ng/mL (TRFNPs) | |||
hCG | 2.3 mIU/mL, 10-120 mIU/mL | 10 pg/100 μl, none (UCPs) | 1.6 mIU/mL, 1.6-1679 mIU/mL | 45.6 mIU/mL, 45.6-230 mIU/mL | |
0.08 ng/mL, 0.16-450 ng/mL (TRFNPs) | |||||
CEA | 4.6 pg/mL, 0.01-50 ng/mL | 0.35 ng/mL, 2.8-680 ng/mL (QDs) | 0.045 ng/mL, 0.045-100 ng/mL | ||
NEO | 100 ng/mL, 0-50 ng/mL | 0.37 pg/mL, 1-1000 pg/mL | |||
RAC | 40.1 pg/mL, 25-2500 pg/mL | 23.6 pg/mL, 25-2500 pg/mL (QDs) | |||
7.2 pg/mL, 5-2500 pg/mL (TRFNPs) | |||||
SEB | 1ng/mL, none | 0.001 ng/mL, none | |||
L. monocytogenes | 3.9 × 105 CFU/mL, none | 19 CFU/mL, 19-1.9 × 104 CFU/mL | 3.5 × 103 CFU/mL, none |
[1] |
G. Osikowicz, M. Beggs, P. Brookhart, D. Caplan, S. Ching, P. Eck, J. Gordon, R. Richerson, S. Sampedro, D. Stimpson, Clin. Chem 36 (1990) 9.
URL PMID |
[2] | E.B. Bahadır, M.K. Sezgintürk, TrAC Trend Anal Chem (2016) 82. |
[3] | Y.S.B. Kim, J.T. Rutka, W.C.W. Chan, New Engl J Med 363 (2010) 35. |
[4] | D.J. Pyo, Anal Lett 40 (2007) 5. |
[5] |
Z. Wang, H. Li, C. Li, Q. Yu, J. Shen, S.D. Saeger, J. Agric, Food Chem. 62(2014) 27.
DOI URL |
[6] | J.A. Molina-Bolivar, F. Galisteo-Gonzalez, R. Hidalgo-Alvarez, J Biomat Sci-Polym E 9 (1998) 10. |
[7] | D.M. Gersten, J.J. Marchalonis, J Immunol Methods 24 (1978) 3-4. |
[8] | M. Yoshioka, Y. Mukai, T. Matsui, A. Udagawa, H. Funakubo, J. Chromatogr. B 566 (1991) 2. |
[9] |
S. Howell, M. Kenmore, M. Kirkland, R. Andy Badley, J Mol Recognit 11 (1998) 1-6.
DOI URL PMID |
[10] | Y. Zhao, G. Zhang, Q. Liu, M. Teng, J. Yang, J. Wang, J. Agric, Food Chem. 56(2008) 24. |
[11] |
P. Preechakasedkit, K. Pinwattana, W. Dungchai, W. Siangproh, W. Chaicumpa, P. Tongtawe, O. Chailapakul, Biosens Bioelectron. 31(2012) 1.
DOI URL PMID |
[12] | P.R. Sahoo, P. Singh, Veterinary World. 7(2014) 11. |
[13] |
D. Kim, Y. Kim, S. Hong, J. Kim, N. Heo, M. Lee, S. Lee, B. Kim, I. Kim, Y. Huh, B. Choi, Sensors (Basel). 16(2016) 12.
DOI URL |
[14] | A.Y. Kolosova, L. Sibanda, F. Dumoulin, J. Lewis, E. Duveiller, C. Van Peteghem, S. De Saeger, Anal Chim Acta 616 (2008) 2. |
[15] |
X. Fu, R. Xie, J. Wang, X. Chen, X. Wang, W. Sun, J. Meng, D. Lai, L. Zhou, B. Wang, Toxins (Basel). 9(2017) 3.
DOI URL |
[16] |
S. Wu, L. Liu, N. Duan, Q. Li, Y. Zhou, Z. Wang, J Agric Food Chem 66 (2018) 8.
URL PMID |
[17] | X. Yan, K.C. Persaud, IEEE Sens J. 19(2019) 2. |
[18] | E. Frohnmeyer, N. Tuschel, T. Sitz, C. Hermann, G.T. Dahl, F. Schulz, A.J. Baeumner, M. Fischer, Analyst 144 (2019) 5. |
[19] | C. Pengsuk, P. Chaivisuthangkura, S. Longyant, P. Sithigorngul, Biosens Bioelectron. 42(2013) 15. |
[20] |
J. Singh, S. Sharma, S. Nara, Food Chem. (2015) 170.
DOI URL PMID |
[21] |
X. Yang, F. Wang, C. Song, S. Wu, G. Zhang, X. Zeng, LWT - Food Sci Technol 64 (2015) 1.
DOI URL |
[22] | Y. Wang, R. Deng, G. Zhang, Q. Li, J. Yang, Y. Sun, Z. Li, X. Hu, J Agric Food Chem 63 (2015) 8. |
[23] | M. Dai, Y. Gong, A. Liu, L. Zhang, J. Lin, M. Zhang, X. Yu, Anal Methods. 7(2015) 10. |
[24] | L. Liu, Y. Chen, S. Song, Q. Zheng, X. Wu, H. Kuang, Food Agr Immunol 28 (2017) 6. |
[25] | Y. Wang, Z. Li, Y. Pei, Q. Li, Y. Sun, J. Yang, Y. Yang, Y. Zhi, R. Deng, Y. Hou, X. Hu, Food Anal Method 10 (2017) 7. |
[26] | S.H. Ang, C.Y. Yu, G.Y. Ang, Y.Y. Chan, Y. Alias, S.M. Khor, Anal Methods. 7(2015) 9. |
[27] |
V.G. Panferov, I.V. Safenkova, A.V. Zherdev, B.B. Dzantiev, Microchim Acta. 185(2018) 11.
DOI URL |
[28] |
C. Parolo, A. Escosura-Mu ˜niz, A.Merkoç i, Biosens Bioelectron. 40(2013) 1.
URL PMID |
[29] |
V.G. Panferov, I.V. Safenkova, Y.A. Varitsev, A.V. Zherdev, B.B. Dzantiev, Microchim Acta. 185(2018) 1.
DOI URL |
[30] |
X. Lu, T. mei, Q. Guo, W. Zhou, Xi. Li, J. Chen, X. Zhou, N. Sun, Z. Fang, Microchim Acta 186 (2019) 2.
DOI URL |
[31] | L.K. Lin, A. Uzunoglu, L.A. Stanciu, Small 14 (2018) 10. |
[32] |
X. Liu, J.J. Xiang, Y. Tang, X.L. Zhang, Q.Q. Fu, J.H. Zou, Y. Lin, Anal Chim Acta 745 (2012) 1.
DOI URL PMID |
[33] |
H.K. Oh, J.W. Kim, J.M. Kim, M.G. Kim, Analyst 143 (2018) 16.
DOI URL PMID |
[34] | L. Yu, M. Liu, T. Wang, X. Wang, Anal Methods. 11(2019) 25. |
[35] | L. Yu, Z. Shi, C. Fang, Y. Zhang, Y. Liu, C. Li, Biosens Bioelectron. 69(2015) 15. |
[36] |
Y. Hou, K. Wang, K. Xiao, W. Qin, W. Lu, W. Tao, D. Cui, Nanoscale Res Lett. 12(2017) 1.
DOI URL PMID |
[37] |
W. Xiao, C. Huang, F. Xu, J. Yan, H. Bian, Q. Fu, K. Xie, L. Wang, Y. Tang, Sensor Actuat B-Chem. 266(2018) 1.
DOI URL |
[38] | A.Y. Kolosova, S. De Saeger, L. Sibanda, R. Verheijen, C. Van Peteghem, Anal Bioanal Chem 389 (2007) 7-8. |
[39] |
M.Z. Zhang, M.Z. Wang, Z.L. Chen, J.H. Fang, M.M. Fang, J. Liu, X.P. Yu, Anal Bioanal Chem (2009) 395.
URL PMID |
[40] | Q. Yu, H. Li, C. Li, S. Zhang, J. Shen, Z. Wang, Food Control (2015) 54. |
[41] | Y. Sun, J. Yang, S. Yang, Q. Sang, M. Teng, Q. Li, R. Deng, L. Feng, X. Hu, G. Zhang, RSC Adv. 8(2018) 17. |
[42] | M. Ren, H. Xu, X. Huang, M. Kuang, Y. Xiong, H. Xu, Y. Xu, H. Chen, A. Wang, Acs Appl Mater Inter 6 (2014) 16. |
[43] | X. Gong, J. Cai, B. Zhang, Q. Zhao, J. Piao, W. Peng, W. Gao, D. Zhou, M. Zhao, J. Chang, J Mater Chem B 5 (2017) 26. |
[44] | H. Yang, D. Li, R. He, Q. Guo, K. Wang, X. Zhang, P. Huang, D. Cui, Nanoscale Res Lett 5 (2010) 5. |
[45] |
X. Li, D. Lu, Z. Sheng, K. Chen, X. Guo, M. Jin, H. Han, Talanta (2012) 100.
DOI URL PMID |
[46] |
Z. Li, Y. Wang, J. Wang, Z. Tang, J.G. Pounds, Y. Lin, Anal Chem 82 (2010) 16.
DOI URL PMID |
[47] | A.N. Berlina, N.A. Taranova, A.V. Zherdev, M.N. Sankov, I.V. Andreev, A.I. Martynov, B.B. Dzantiev, PLoS One. 8(2013) 10. |
[48] | M. Savin, C.M. Mihailescu, D.I. Matei, C.A. Stan, M. Moldovan, I. Ion, Baciu, Talanta. (2018) 178. |
[49] | E.A. Sapountzi, S.S. Tragoulias, D.P. Kalogianni, P.C. Ioannou, T.K. Christopoulos, Anal Chim Acta. (2015) 864. |
[50] | A.N. Berlina, N.A. Taranova, A.V. Zherdev, Y.Y. Vengerov, B.B. Dzantiev, Anal Bioanal Chem. 405(2013) 14. |
[51] |
H. Qu, Y. Zhang, B. Qu, H. Kong, G. Qin, S. Liu, J. Cheng, Q. Wang, Y. Zhao, Biosens Bioelectron. (2016) 81.
DOI URL PMID |
[52] | W. Sheng, S. Li, Y. Liu, J. Wang, Y. Zhang, S. Wang, Microchim Acta. 184(2017) 11. |
[53] | J.G. Bruno, Pathogens 3 (2014) 2. |
[54] | H. Shen, H. Yuan, J.Z. Niu, S. Xu, C. Zhou, L. Ma, L.S. Li, Nanotechnology 22 (2011) 37. |
[55] | J. Hu, Z.L. Zhang, C.Y. Wen, M. Tang, L.L. Wu, C. Liu, L. Zhu, D.W. Pang, Anal Chem. 88(2016) 12. |
[56] | J. Li, M. Mao, F. Wu, Q. Li, L. Wei, L. Ma, Anal Methods. 10(2018) 29. |
[57] |
X. Yan, K. Wang, W. Lu, W. Qin, D. Cui, J. He, Nanoscale Res Lett 11 (2016) 1.
DOI URL PMID |
[58] |
L. Anfossi, F. Di Nardo, S. Cavalera, C. Giovannoli, G. Spano, E.S. Speranskaya, I. Y. Goryacheva, C. Baggiani, Microchimi Acta 185 (2018) 2.
DOI URL |
[59] | H. Shen, H. Yuan, F. Wu, X. Bai, C. Zhou, H. Wang, T. Lu, Z. Qin, L. Ma, L.S. Li, J Mater Chem. 22(2012) 35. |
[60] |
N.V. Beloglazova, A.M. Sobolev, M.D. Tessier, Z. Hens, I.Y. Goryacheva, S. DeSaeger, Methods (2017) 116.
URL PMID |
[61] | R. Wu, T. Wang, M. Wu, Y. Lv, X. Liu, J. Li, H. Shen, L. Li, Chem Eng J. (2018) 348. |
[62] | L. Huang, T. Liao, J. Wang, L. Ao, W. Su, J. Hu, Adv Funct Mater 28 (2018) 4. |
[63] | J. Chen, Z. Huang, H. Meng, L. Zhang, D. Ji, J. Liu, F. Yu, L. Qu, Z. Li, Sensor Actuat B-Chem (2018) 260. |
[64] | A. Foubert, N.V. Beloglazova, S. De Saeger, Anal Chim Acta (2017) 955. |
[65] |
N.A. Taranova, A.N. Berlina, A.V. Zherdev, B.B. Dzantiev, Biosens Bioelectron (2015) 63.
URL PMID |
[66] |
Z. Chen, R. Liang, X. Guo, J. Liang, Q. Deng, M. Li, T. An, T. Liu, Y. Wu, Biosens Bioelectron (2017) 91.
DOI URL PMID |
[67] |
X. Ping, Q. Ye, H. Zhong, S. Lin, L. Xu, H. Yu, Nanoscale Res Lett (2016) 11.
DOI URL PMID |
[68] | Y. Shao, H. Duan, L. Guo, Y. Leng, W. Lai, Y. Xiong, Anal Chim Acta 1025 (2018) 26. |
[69] |
F. Auzel, Chem Rev. 104(2004) 1.
URL PMID |
[70] | Y. Tang, Z. Gao, S. Wang, X. Gao, J. Gao, Y. Ma, X. Liu, J. Li, Biosens Bioelectron. 71(2015) 15. |
[71] |
R.S. Niedbala, H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milunic, P. Bourdelle, R. Vallejo, Anal Biochem. 293(2001) 1.
DOI URL PMID |
[72] | J. Hampl, M. Hall, N.A. Mufti, Y.M. Yao, D.B. MacQueen, W.H. Wright, D.E. Cooper, Anal Biochem. 288(2001) 2. |
[73] |
I.Y. Goryacheva, P. Lenain, S. Saeger, TrAC-Trend Anal Chem (2013) 46.
URL PMID |
[74] |
X. Huang, Z.P. Aguilar, H. Xu, W. Lai, Y. Xiong, Biosens Bioelectron (2016) 75.
DOI URL PMID |
[75] |
D. Quesada-González, A. Merkoç i, Biosens Bioelectron (2015) 73.
URL PMID |
[76] |
Y. Zhao, X. Liu, X. Wang, C. Sun, X. Wang, P. Zhang, J. Qiu, R. Yang, L. Zhou, Talanta, (2016) 161.
DOI URL PMID |
[77] | P. Zhao, Y. Wu, Y. Zhu, X. Yang, X. Jiang, J. Xiao, Y. Zhang, C. Li, Nanoscale 6 (2014) 7. |
[78] | Z. Liang, X. Wang, W. Zhu, P. Zhang, Y. Yang, C. Sun, J. Zhang, X. Wang, Z. Xu, Y. Zhao, R. Yang, S. Zhao, L. Zhou, ACS Appl Mater Inter 9 (2017) 4. |
[79] | J. Kim, J.H. Kwon, J. Jang, H. Lee, S. Kim, Y.K. Hahn, S.K. Kim, K.H. Lee, S. Lee, H. Pyo, C.S. Song, J. Lee, Biosens Bioelectron. 112(2018) 30. |
[80] |
Z. Yan, L. Zhou, Y. Zhao, J. Wang, L. Huang, K. Hu, H. Liu, H. Wang, Z. Guo, Y. Song, H. Huang, R. Yang, Sensor Actuat B-Chem 119 (2006) 2.
DOI URL |
[81] | Q. Qu, Z. Zhu, Y. Wang, Z. Zhong, J. Zhao, F. Qiao, X. Du, Z. Wang, R. Yang, L. Huang, Y. Yu, L. Zhou, Z. Chen, J Microbio Meth. 79(2009) 1. |
[82] | Q. Hu, Q. Wei, P. Zhang, S. Li, L. Xue, R. Yang, C. Wang, L. Zhou, Analyst 143 (2018) 19. |
[83] | X. Yang, L. Liu, Q. Hao, D. Zou, X. Zhang, L. Zhang, H. Li, Y. Qiao, H. Zhao, L. Zhou, Plos One 12 (2017) 2. |
[84] | W. Hong, L. Huang, H. Wang, J. Qu, Z. Guo, C. Xie, Z. Zhu, Y. Zhang, Z. Du, Y. Yan, Y. Zheng, H. Huang, R. Yang, L. Zhou, J Microbiol Methods. 83(2010) 2. |
[85] | M. Hao, P. Zhang, B. Li, X. Liu, Y. Zhao, H. Tan, C. Sun, X. Wang, X. Wang, H. Qiu, D. Wang, B. Diao, H. Jing, R. Yang, B. Kan, L. Zhou, PLoS One. 12(2017) 6. |
[86] | P. Zhang, X. Liu, C. Wang, Y. Zhao, F. Hua, C. Li, R. Yang, L. Zhou, PLoS One. 9(2014) 8. |
[87] | Y. Zhao, H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, L. Zhou, Sci Rep-UK (2016) 6. |
[88] |
R. Zou, Y. Chang, T. Zhang, F. Si, Y. Liu, Y. Zhao, Y. Liu, M. Zhang, X. Yu, X. Qiao, G. Zhu, Y. Guo, Front Chem. (2019) 7.
DOI URL PMID |
[89] |
L.M. Hu, K. Luo, J. Xia, G.M. Xu, C.H. Wu, J.J. Han, G.G. Zhang, M. Liu, W.H. Lai, Biosens Bioelectron. (2017) 91.
DOI URL PMID |
[90] |
B. Huang, L. Wang, Y. Zhang, J. Zhang, Q. Zhang, H. Xiao, B. Zhou, Z. Sun, Y.N. Cao, Y. Chen, Z. Hu, H. Sheng, Sci Rep. (2017) 7.
DOI URL PMID |
[91] | T. Näreoja, J.M. Rosenholm, U. Lamminmäki, P.E. Hänninen, Anal Bioanal Chem 409 (2017) 13. |
[92] |
S. Hu, D. Li, Z. Huang, K. Xing, Y. Chen, J. Peng, W. Lai, Food Agr Immunol 29 (2018) 1.
DOI URL |
[93] |
F.B. Wu, S.Q. Han, T. Xu, Y.F. He, Anal Biochem. 314(2003) 1.
DOI URL PMID |
[94] | A.M. Gutiérrez, J.J. Cerón, B.A. Marsilla, M.D. Parra, S. Martinez-Subiela, Can J Vet Res. 76(2012) 2. |
[95] | J.Y. Hou, T.C. Liu, Z.Q. Ren, M.J. Chen, G.F. Lin, Y.S. Wu, Analyst 138 (2013) 13. |
[96] | Z. Liu, J. Huang, R.M. Ou, M.D. Yao, Y.L. She, R. Chen, C. Li, L. Xu, A. Abudureyimu, Q. Zhang, S. Liu, J Clin Lab Anal 31 (2017) , 6. |
[97] | Y. Liu, Y.H. Liu, W.J. Bei, K. Wang, T.T. Cui, H.L. Li, D.X. W, S.Q. Chen, N. Tan, J.Y. Chen, Br J Biomed Sci 74 (2017) 4. |
[98] |
Y. Zhang, X. Yang, J. Qian, X. Gu, J. Zhang, J. Liu, Z. Hu, Anal Biochem 548 (2018) 1.
DOI URL PMID |
[99] | K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, C. Gao, Nano Lett. 16(2016) 6. |
[100] |
C. Wang, J. Xu, J. Wang, Z. Rong, P. Li, R. Xiao, S. Wang, J Mater Chem C. 3(2015) 33.
DOI URL |
[101] |
J. Guo, F. Zeng, J. Guo, X. Ma, J Mater Sci Technol 37 (2020) 96-103.
DOI URL |
[102] | R. Wang, K. Kim, N. Choi, X. Wang, J. Lee, J.H. Jeon, G. Rhie, J. Choo, Sensor Actuat B-Chem (2018) 270. |
[103] | X. Fu, J. Wen, J. Li, H. Lin, Y. Liu, X. Zhuang, C. Tian, L. Chen, Nanoscale 11 (2019) 33. |
[104] | M. Eryılmaz, E.A. Soykut, D. Çetin, I.H. Boyacı, Z. Suludere, U. Tamer, Analyst 144 (2019) 11. |
[105] | M. Sánchez-Purrà, B. Roig-Solvas, A. Versiani, C. Rodriguez-Quijada, H. Puig, I. Bosch, L. Gehrke, K. Hamad-Schifferli, Mol. Syst. Des. Eng 2 (2017) 4. |
[106] |
J. Hwang, S. Lee, J. Choo, Nanoscale 8 (2016) 22.
DOI URL PMID |
[107] | B.N. Khlebtsov, D.N. Bratashov, N.A. Byzova, B.B. Dzantiev, N.G. Khlebtsov, Nano Res. 12(2019) 2. |
[108] | X. Fu, Y. Chu, K. Zhao, J. Li, A. Deng, Microchim Acta 184 (2017) 6. |
[109] | L. Blanco-Covián, V. Montes-García, A. Girard, M.T. Fernández-Abedul, J. Pérez-Juste, I. Pastoriza-Santos, K. Faulds, D. Grahamc, M.C. Blanco-López, Nanoscale. 9(2017) 5. |
[110] | X. Jia, C. Wang, Z. Rong, J. Li, K. Wang, Z. Qie, R. Xiao, S. Wang, RSC Adv 8 (2018) 38. |
[111] | T. Bai, M. Wang, M. Cao, J. Zhang, K. Zhang, P. Zhou, Z. Liu, Y. Liu, Z. Guo, X. Lu, Anal Bioanal Chem 410 (2018) 9. |
[112] | X. Fu, Z. Cheng, J. Yu, P. Choo, L. Chen, J. Choo, Biosens Bioelectron. 78(2016) 15. |
[113] | S. Choi, J. Hwang, S. Lee, D.W. Lim, H. Joo, J. Choo, Sensor Actuat B-Chem (2017) 240. |
[114] | Z. Rong, R. Xiao, S. Xing, G. Xiong, Z. Yu, L. Wang, X. Jia, K. Wang, Y. Cong, S. Wang, Analyst 143 (2018) 9. |
[115] | V. Tran, B. Walkenfort, M. König, M. Salehi, S. Schlücker, Angew Chem Int Ed. (2019) 58. |
[116] |
X. Wang, N. Choi, Z. Cheng, J. Ko, L. Chen, J. Choo, Anal. Chem. 89(2017) 2.
DOI URL PMID |
[117] | H.B. Liu, X.J. Du, Y.X. Zang, P. Li, S. Wang, J Agric Food Chem 65 (2017) 47. |
[118] |
Q. Shi, J. Huang, Y. Sun, R. Deng, M. Teng, Q. Li, Y. Yang, X. Hu, Z. Zhang, G. Zhang, Mikrochim Acta 185 (2018) 2.
DOI URL PMID |
[119] |
D. Zhang, L. Huang, B. Liu, H. Ni, L. Sun, E. Su, H. Chen, Z. Gu, X. Zhao, Biosens Bioelectron. (2018) 106.
DOI URL PMID |
[120] | Y. Wang, S. Zong, N. Li, Z. Wang, B. Chen, Y. Cui, Nanoscale (2019) 5. |
[121] |
S. Oh, S. Anandakumar, C.W. Lee, K.W. Kim, B. Lim, C.G. Kim, Sensor Actuat B- Chem 160 (2011) 1.
DOI URL |
[122] | J. Yan, Y. Liu, Y. Wang, X. Xu, Y. Lu, Y. Pan, F. Guo, D. Shi, Sensor Actuat B-Chem (2014) 195. |
[123] | D. Liu, Y. Huang, S. Wang, K. Liu, M. Chen, Y. Xiong, W. Yang, W. Lai, Food Control. (2015) 51. |
[124] | J. Wu, M. Dong, C. Zhang, Y. Wang, M. Xie, Y. Chen, Sensors (2017) 17. |
[125] |
V.G. Panferov, I.V. Safenkova, A.V. Zherdev, B.B. Dzantiev, Talanta (2017) 164.
DOI URL PMID |
[126] | W. Ren, I.H. Cho, Z. Zhou, J. Irudayaraj, Chem Commun 52 (2016) 27. |
[127] | D. Tang, J.C. Sauceda, Z. Lin, S. Ott, E. Basova, I. Goryacheva, S. Biselli, J. Lin, R. Niessner, D. Knopp, Biosens Bioelectron. 25(2009) 2. |
[128] | X. Liu, C. Zhang, K. Liu, H. Wang, C. Lu, H. Li, J. K.vHua, W. Zhu, Y. Hui, Cui, Anal Chem. 90(2018) 5. |
[129] | X. Yan, S. Zhang, J. Liang, Y. Cai, J. Zhu, C. Zhang, D. Li, K. Hua, Y. Cui, W. Hui, Artif Cell Nanomed B 47 (2019) 1. |
[130] |
X. Zhang, L. Jiang, C. Zhang, D. Li, C. Wang, F. Gao, D. Cui, J Biomed Nanotechnol. 7(2011) 6.
URL PMID |
[131] | S.C. Razo, V.G. Panferov, I.V. Safenkova, Y.A. Varitsev, A.V. Zherdev, B.B. Dzantiev, Anal Chim Acta. 1007(2018) 12. |
[132] | Y. Wang, H. Xu, M. Wei, H. Gu, Q. Xu, W. Zhu, Mat Sci Eng C-Mater 29 (2009) 3. |
[133] | D.B. Wang, B. Tian, Z.P. Zhang, J.Y. Deng, Z.Q. Cui, R.F. Yang, X.Y. Wang, H.P. Wei, X.E. Zhang, Biosens Bioelectron. 42(2013) 15. |
[134] | D.B. Wang, B. Tian, Z.P. Zhang, X.Y. Wang, J. Fleming, L.J. Bi, R.F. Yang, X.E. Zhang, Biosens Bioelectron 67 (2015) 15. |
[135] | F. Li, F. Li, D. Luo, W. Lai, Y. Xiong, H. Xu, Anal Chim Acta (2018) 1017. |
[136] | W. Lu, K. Wang, K. Xiao, W. Qin, Y. Hou, H. Xu, X. Yan, Y. Chen, D. Cui, J. He, Sci Rep-UK (2017) 7. |
[137] | A.V. Orlov, S.L. Znoyko, V.R. Cherkasov, M.P. Nikitin, P.I. Nikitin, Anal Chem. 88(2016) 21. |
[138] | S.H. Lim, J. Wei, J. Lin, Q. Li, J. Kuayou, Biosens Bioelectron. 20(2005) 11. |
[139] | L. Zhang, Q. Sun, D. Liu, A. Lu, J Mater Chem A. 1(2013) 33. |
[140] |
D.G. Lee, S.M. Kim, H. Jeong, J. Kim, I.S. Lee, ACS Nano. 8(2014) 5.
DOI URL PMID |
[141] | B. Hu, K. Wang, L. Wu, S.H. Yu, M. Antonietti, M.M. Titirici, Adv Mater. 22(2010) 7. |
[142] | W. Qiu, H. Xu, S. Takalkar, A.S. Gurung, B. Liu, Y. Zheng, Z. Guo, M. Baloda, K. Baryeh, G. Liu, Biosens Bioelectron. 64(2015) 15. |
[143] | Y. Huang, Y. Wen, K. Baryeh, S. Takalkar, M. Lund, X. Zhang, G. Liu, Mikrochim Acta. 184(2017) 11. |
[144] | Y. Liu, T. Song, X. Jia, L. Meng, X. Mao, Sensor Actuat B-Chem (2017) 251. |
[145] | D. Du, J. Wang, L. Wang, D. Lu, Y. Lin, Anal Chem. 84(2012) 3. |
[146] | X. Zhu, P. Shah, S. Stoff, H. Liu, C.Z. Li, Analyst 139 (2014) 11. |
[147] | N. Wiriyachaiporn, H. Sirikett, W. Maneeprakorn, T. Dharakul, Microchim Acta 184 (2017) 6. |
[148] |
S. Takalkar, K. Baryeh, G. Liu, Biosens Bioelectron (2017) 98.
DOI URL PMID |
[149] | X. Zhang, X. Yu, K. Wen, C. Li, G. Mujtaba Mari, H. Jiang, W. Shi, J. Shen, Z. Wang, J Agric Food Chem 65 (2017) 36. |
[150] | Y. Wang, Z. Qin, D.R. Boulware, B.S. Pritt, L.M. Sloan, I. J.González, R.R.D. Bell, P. Rees-Channer, Chiodini , W.C. Chan, J.C. Bischof, Anal Chem 88 (2016) 23. |
[151] |
S. Song, S. Choi, S. Ryu, S. Kim, T. Kim, J. Shin, H.I. Jung, C. Joo, Biosens Bioelectron (2018) 117.
DOI URL PMID |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||