J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (10): 2383-2395.DOI: 10.1016/j.jmst.2019.05.058
• Orginal Article • Previous Articles Next Articles
Lintao Guiac, Mujun Longac*(), Shixin Wuac, Hua Zhengd, Zhihua Dongb, Jianguo Lia, Dengfu Chenac*(
), Yunwei Huangac, Yunwei Huangac, Huamei Duanac, Levente Vitosb
Received:
2019-02-04
Revised:
2019-03-13
Accepted:
2019-05-22
Online:
2019-10-05
Published:
2019-08-28
Contact:
Long Mujun,Chen Dengfu
Lintao Gui, Mujun Long, Shixin Wu, Hua Zheng, Zhihua Dong, Jianguo Li, Dengfu Chen, Yunwei Huang, Yunwei Huang, Huamei Duan, Levente Vitos. Quantitative effects of phase transition on solute partition coefficient, inclusion precipitation, and microsegregation for high-sulfur steel solidification[J]. J. Mater. Sci. Technol., 2019, 35(10): 2383-2395.
Elements | $D_{i}^{\delta}$ (cm2/s) | $D_{i}^{\gamma}$ (cm2/s) |
---|---|---|
C | 0.0127exp(-19450/(RT)) | 0.0761exp(-32160/(RT)) |
Si | 8.0exp(-59500/(RT)) | 0.3exp(-60100/(RT)) |
Mn | 0.76exp(-53640/(RT)) | 0.055exp (-59600/(RT)) |
P | 2.9exp(-55000/(RT)) | 0.01exp (-43700/(RT)) |
S | 4.56exp(-51300/(RT)) | 2.4exp(-53400/(RT)) |
Table 1 Solute diffusion coefficients in the δ and γ phases of steel [15,21,28].
Elements | $D_{i}^{\delta}$ (cm2/s) | $D_{i}^{\gamma}$ (cm2/s) |
---|---|---|
C | 0.0127exp(-19450/(RT)) | 0.0761exp(-32160/(RT)) |
Si | 8.0exp(-59500/(RT)) | 0.3exp(-60100/(RT)) |
Mn | 0.76exp(-53640/(RT)) | 0.055exp (-59600/(RT)) |
P | 2.9exp(-55000/(RT)) | 0.01exp (-43700/(RT)) |
S | 4.56exp(-51300/(RT)) | 2.4exp(-53400/(RT)) |
Fig. 1. Flow chart of the current coupling model of microsegregation, inclusion precipitation, and changed solute partition coefficient and diffusion coefficient.
Steels | C | Si | Mn | P | S | Refs. |
---|---|---|---|---|---|---|
S1 | 1.00 | 0.27 | 0.36 | 0.019 | 0.018 | [ |
S2 | 0.13 | 0.35 | 1.52 | 0.016 | 0.002 | [ |
S3 | 0.21 | 0.04 | 1.50 | 0.0036 | 0.0021 | [ |
Table 2 Chemical compositions of the steels (wt%).
Steels | C | Si | Mn | P | S | Refs. |
---|---|---|---|---|---|---|
S1 | 1.00 | 0.27 | 0.36 | 0.019 | 0.018 | [ |
S2 | 0.13 | 0.35 | 1.52 | 0.016 | 0.002 | [ |
S3 | 0.21 | 0.04 | 1.50 | 0.0036 | 0.0021 | [ |
Path | C (wt%) | L+δ range (K) | ΔTL+δ | L+δ + γ range (K) | ΔTL+δ+γ | L+γ range (K) | ΔTL+γ | TL-TS | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$T_{start}^{\delta+L}$ | $T_{end}^{\delta+L}$ | $T_{start}^{\delta+\gamma+L}$ | $T_{end}^{\delta+\gamma+L}$ | $T_{start}^{\gamma+L}$ | $T_{end}^{\gamma+L}$ | ||||||
I | 0.02 | 1793 | 1760 | 33 | - | - | - | - | - | - | 33 |
0.04 | 1791 | 1751 | 40 | - | - | - | - | - | - | 40 | |
0.07 | 1789 | 1739 | 50 | - | - | - | - | - | - | 50 | |
II | 0.11 | 1785 | 1742 | 43 | 1742 | 1735 | 7 | - | - | - | 50 |
0.135 | 1783 | 1743 | 40 | 1743 | 1732 | 11 | - | - | - | 51 | |
III | 0.16 | 1781 | 1743 | 38 | 1743 | 1737 | 6 | 1737 | 1728 | 9 | 53 |
0.25 | 1774 | 1747 | 27 | 1747 | 1744 | 3 | 1744 | 1712 | 32 | 62 | |
0.35 | 1765 | 1751 | 14 | 1751 | 1750 | 1 | 1750 | 1694 | 56 | 71 | |
IV | 0.5 | - | - | - | - | - | - | 1752 | 1668 | 84 | 84 |
Table 3 Phase transition temperature, coexisting phase, and temperature range of each coexisting phase for high-sulfur steel under different solidification paths.
Path | C (wt%) | L+δ range (K) | ΔTL+δ | L+δ + γ range (K) | ΔTL+δ+γ | L+γ range (K) | ΔTL+γ | TL-TS | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$T_{start}^{\delta+L}$ | $T_{end}^{\delta+L}$ | $T_{start}^{\delta+\gamma+L}$ | $T_{end}^{\delta+\gamma+L}$ | $T_{start}^{\gamma+L}$ | $T_{end}^{\gamma+L}$ | ||||||
I | 0.02 | 1793 | 1760 | 33 | - | - | - | - | - | - | 33 |
0.04 | 1791 | 1751 | 40 | - | - | - | - | - | - | 40 | |
0.07 | 1789 | 1739 | 50 | - | - | - | - | - | - | 50 | |
II | 0.11 | 1785 | 1742 | 43 | 1742 | 1735 | 7 | - | - | - | 50 |
0.135 | 1783 | 1743 | 40 | 1743 | 1732 | 11 | - | - | - | 51 | |
III | 0.16 | 1781 | 1743 | 38 | 1743 | 1737 | 6 | 1737 | 1728 | 9 | 53 |
0.25 | 1774 | 1747 | 27 | 1747 | 1744 | 3 | 1744 | 1712 | 32 | 62 | |
0.35 | 1765 | 1751 | 14 | 1751 | 1750 | 1 | 1750 | 1694 | 56 | 71 | |
IV | 0.5 | - | - | - | - | - | - | 1752 | 1668 | 84 | 84 |
Fig. 5. The evolution of the mass fractions of liquid, δ and γ phases for high-sulfur steel under different solidification paths. (a) liquid phase, (b) δ phase, and (c) γ phase.
Fig. 6. The proportion of phase maintained temperature region for δ and γ phases (Pδ and Pγ) in high-sulfur steel under different solidification paths. (a) Sketch map of Pδ and Pγ, and (b) Pδ and Pγ with C content.
Fig. 7. The variation of solute partition coefficients for high-sulfur steel under different solidification paths: (a) kC, (b) kSi, (c) kP and kS, and (d) kMn.
Fig. 8. The average partition coefficient of solutes (kiave) for high-sulfur steel that under different solidification paths. (a) C, (b) Si, (c) P and S, and (d) Mn.
Fig. 11. The predicted solute concentration profiles for high-sulfur steel solidification by current coupling model (0.16 wt% C, path III). (a) C, (b) S, (c) Si, and (d) Mn.
|
[1] | Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure [J]. J. Mater. Sci. Technol., 2020, 48(0): 114-122. |
[2] | Gang Qin, Ruirun Chen, Huiting Zheng, Hongze Fang, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition [J]. J. Mater. Sci. Technol., 2019, 35(4): 578-583. |
[3] | Peng Jia, Leipeng Duan, Kang Wang, Engang Wang. Magnetic properties and magnetocaloric effects of Gd65(Cu,Co,Mn)35 amorphous ribbons [J]. J. Mater. Sci. Technol., 2019, 35(10): 2283-2287. |
[4] | B. Wurentuya, Shuang Ma, B. Narsu, O. Tegus, Zhidong Zhang. Lattice dynamics of FeMnP0.5Si0.5 compound from first principles calculation [J]. J. Mater. Sci. Technol., 2019, 35(1): 127-133. |
[5] | Zhishuai Xu, Yuting Dai, Yue Fang, Zhiping Luo, Ke Han, Changjiang Song, Qijie Zhai, Hongxing Zheng. High-temperature phase transition behavior and magnetocaloric effect in a sub-rapidly solidified La-Fe-Si plate produced by centrifugal casting [J]. J. Mater. Sci. Technol., 2018, 34(8): 1337-1343. |
[6] | Li Gong, Bo Chen, Long Zhang, Yingche Ma, Kui Liu. Effect of cooling rate on microstructure, microsegregation and mechanical properties of cast Ni-based superalloy K417G [J]. J. Mater. Sci. Technol., 2018, 34(5): 811-820. |
[7] | Gang Qin, Shu Wang, Ruirun Chen, Xue Gong, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys [J]. J. Mater. Sci. Technol., 2018, 34(2): 365-369. |
[8] | Yan-Jia Liou, Wu-Jang Huang. High Temperature Phase Transitions of Graphene Oxide Paper from Graphite Oxide Solution [J]. J. Mater. Sci. Technol., 2014, 30(11): 1088-1091. |
[9] | Shijie Zhang, Xibin Cao, Yingqiang Luan, Xinxin Ma, Xiaohui Lin, Xianren Kong. Preparation and Properties of Smart Thermal Control and Radiation Protection Materials for Multi-functional Structure of Small Spacecraft [J]. J Mater Sci Technol, 2011, 27(10): 879-884. |
[10] | Yunfeng WU, Ping ZHANG, Jianzhou ZHENG. Critical Property of the Geometric Phase in the Dicke Model with the Dipole-dipole Interactions [J]. J Mater Sci Technol, 2008, 24(06): 960-962. |
[11] | Xiang XUE, Jinjun TANG. Numerical Simulation of Microstructure and Microsegregation in Ni-Cu Alloy under Isothermal Condition [J]. J Mater Sci Technol, 2008, 24(03): 391-394. |
[12] | K.Haddadi, L.Louail, D.Maouche. Elastic Properties of Potassium Halides under Pressure [J]. J Mater Sci Technol, 2008, 24(02): 241-244. |
[13] | H.B.Dong. Numerical Modelling and Experimental Investigation of Microse-gregation in Al-4.45 wt pct Cu: Effect of Dendrite Joining [J]. J Mater Sci Technol, 2005, 21(05): 753-758. |
[14] | Xinglun TANG, Xiuhua ZHENG. Raman Scattering and t-Phase Lattice Vibration of 3% (mole fraction) Y2O3-ZrO2 [J]. J Mater Sci Technol, 2004, 20(05): 485-489. |
[15] | Dayong GUO, Yuansheng YANG, Wenhui TONG, Zhuangqi HU. Numerical Simulation of Morphology and Microsegregation Evolution during Solidification of Al-Si Alloy [J]. J Mater Sci Technol, 2004, 20(01): 19-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||