J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (7): 1228-1239.DOI: 10.1016/j.jmst.2019.01.008
• Orginal Article • Previous Articles Next Articles
Bo Liuab, Xin Mub*(), Ying Yangc, Long Haob*(
), Xueyong Dinga, Junhua Dongb*(
), Zhe Zhangc, Huaxing Houc, Wei Keb
Received:
2018-10-23
Revised:
2018-12-19
Accepted:
2018-12-29
Online:
2019-07-20
Published:
2019-06-20
Contact:
Mu Xin,Hao Long,Dong Junhua
About author:
1These authors contributed equally to this work.
Bo Liu, Xin Mu, Ying Yang, Long Hao, Xueyong Ding, Junhua Dong, Zhe Zhang, Huaxing Hou, Wei Ke. Effect of tin addition on corrosion behavior of a low-alloy steel in simulated costal-industrial atmosphere[J]. J. Mater. Sci. Technol., 2019, 35(7): 1228-1239.
Sample | C | Si | Mn | P | S | Nb | Ti | Al | Cu | Sn |
---|---|---|---|---|---|---|---|---|---|---|
No. 1 | 0.078 | 0.171 | 1.16 | 0.006 | 0.004 | 0.007 | 0.018 | 0.035 | 0.007 | -- |
No. 2 | 0.074 | 0.150 | 1.21 | 0.008 | 0.002 | 0.011 | 0.014 | 0.028 | 0.007 | 0.074 |
Table 1 Chemical composition of tin-free and tin-containing low-alloy steels (wt.%).
Sample | C | Si | Mn | P | S | Nb | Ti | Al | Cu | Sn |
---|---|---|---|---|---|---|---|---|---|---|
No. 1 | 0.078 | 0.171 | 1.16 | 0.006 | 0.004 | 0.007 | 0.018 | 0.035 | 0.007 | -- |
No. 2 | 0.074 | 0.150 | 1.21 | 0.008 | 0.002 | 0.011 | 0.014 | 0.028 | 0.007 | 0.074 |
Fig. 2. Corrosion kinetics evolution of two low-alloy steels in simulated coastal-industrial atmosphere as a function of CCT cycle: (a) linear plot of weight gain; (b) average corrosion rate and linear fitting results in log-log coordinates.
Sample | Stage I | Stage II | Stage III |
---|---|---|---|
Tin-free steel | logΔW/N = -3.32 + 0.29logN R2 = 0.98 (N≤ 4) | logΔW/N = -2.97-0.24logN R2 = 0.96 (4<N≤ 20) | logΔW/N = -2.70-0.43logN R2 = 0.99 (20<N≤120) |
Tin-containing steel | logΔW/N = -3.42 + 0.15logN R2 = 0.94 (N≤ 10) | logΔW/N = -3.07-0.20logN R2 = 0.92 (10<N≤ 20) | logΔW/N = -2.72-0.45logN R2 = 0.99 (20<N≤120) |
Table 2 Linear fitting results of corrosion kinetics data in Fig. 2(b).
Sample | Stage I | Stage II | Stage III |
---|---|---|---|
Tin-free steel | logΔW/N = -3.32 + 0.29logN R2 = 0.98 (N≤ 4) | logΔW/N = -2.97-0.24logN R2 = 0.96 (4<N≤ 20) | logΔW/N = -2.70-0.43logN R2 = 0.99 (20<N≤120) |
Tin-containing steel | logΔW/N = -3.42 + 0.15logN R2 = 0.94 (N≤ 10) | logΔW/N = -3.07-0.20logN R2 = 0.92 (10<N≤ 20) | logΔW/N = -2.72-0.45logN R2 = 0.99 (20<N≤120) |
Fig. 3. Calculated instantaneous corrosion rate evolution of two low-alloy steels in the simulated coastal-industrial atmosphere as a function of CCT cycle.
Fig. 4. Macroscopic corrosion morphologies of rusted tin-free steel at (a) 10 CCT, (b) 20 CCT, (c) 60 CCT, (d) 120 CCT and rusted tin-containing steel at (a') 10 CCT, (b') 20 CCT, (c') 60 CCT, (d') 120 CCT as a function of CCT cycle.
Fig. 5. Cross sectional morphologies of rusted tin-free steel at (a) 10 CCT, (b) 20 CCT, (c) 60 CCT, (d) 120 CCT and rusted tin-containing steel at (a') 10 CCT, (b') 20 CCT, (c') 60 CCT, (d') 120 CCT as a function of CCT cycle.
Fig. 7. Polarization curves of tin-free steel and tin-containing steel as a function of CCT cycle: (a) 0 CCT; (b) 4 CCT; (c) 8 CCT; (d) 20 CCT; (e) 60 CCT; (f) 120 CCT.
Fig. 8. (a, b) Modulus and (a', b') phase angle diagrams for (a, a') tin-free and (b, b') tin-containing low-alloy steels in corrosion electrolyte as a function of CCT cycle.
Fig. 9. Equivalent electrical circuits for EIS data of two low-alloy steels at different CCT cycle: (a) un-corroded 0 CCT sample; (b) corroded samples with different CCT cycle.
CCT cycle | Rs | QO (mS sn cm-2) | RO | Yw-O | QH (mS sn cm-2) | RH | Yw-H | Qrust (mS sn cm-2) | Rrust | Qdl (mS sn cm-2) | Rct | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Ω cm2) | YO | nO | (Ω cm2) | (mS s0.5 cm-2) | YH | nH | (Ω cm2) | (mS sn cm-2) | Yrust | nrust | (Ω cm2) | Ydl | ndl | (Ω cm2) | |
Tin-free steel | |||||||||||||||
0 | 36.60 | 6.3480 | 0.6688 | 5.157 | 0.8538 | 0.86950 | 0.9559 | 14.25 | - | - | - | - | 1.0280 | 0.9600 | 72.41 |
4 | 20.01 | - | - | - | - | 0.11520 | 0.6051 | 24.85 | 0.0026 | 2.341 | 0.1919 | 29.97 | 0.1176 | 0.1775 | 9.450 |
8 | 19.21 | - | - | - | - | 0.00005 | 0.9098 | 33.68 | 100.70 | 72.13 | 0.4560 | 41.17 | 26.520 | 0.2801 | 29.57 |
20 | 21.34 | - | - | - | - | 0.06155 | 0.3334 | 42.58 | 0.0626 | 32.19 | 0.5803 | 139.2 | 17.550 | 0.3863 | 160.6 |
60 | 21.59 | - | - | - | - | 12.6400 | 0.4419 | 43.33 | 2.0250 | 0.9437 | 0.4856 | 223.9 | 0.0052 | 0.4800 | 212.5 |
120 | 21.01 | - | - | - | - | 5.26300 | 0.3980 | 43.89 | 0.2394 | 2.582 | 0.6626 | 413.3 | 0.0041 | 0.5028 | 267.7 |
Tin-containing steel | |||||||||||||||
0 | 39.45 | 9.7840 | 0.1048 | 11.64 | 0.3876 | 0.53080 | 0.9199 | 50.09 | - | - | - | - | 0.9040 | 0.9800 | 210.4 |
4 | 21.05 | - | - | - | - | 0.15380 | 0.5947 | 28.58 | 0.0187 | 1.418 | 0.6576 | 25.08 | 0.0090 | 0.1815 | 13.97 |
8 | 20.62 | - | - | - | - | 0.00008 | 0.7834 | 37.53 | 0.0898 | 108.8 | 0.5184 | 47.42 | 35.220 | 0.2802 | 23.75 |
20 | 22.43 | - | - | - | - | 0.02632 | 0.3888 | 48.20 | 0.0693 | 15.12 | 0.3222 | 133.5 | 32.430 | 0.1877 | 156.7 |
60 | 22.09 | - | - | - | - | 12.1800 | 0.7992 | 53.30 | 0.0063 | 20.02 | 0.5729 | 190.7 | 1.3290 | 0.1094 | 232.7 |
120 | 21.84 | - | - | - | - | 12.8500 | 0.3548 | 53.50 | 0.0234 | 1.762 | 0.5205 | 188.1 | 0.2188 | 0.2195 | 230.3 |
Table 3 Fitting results of EIS data of rusted tin-free steel and tin-containing steel samples as a function of CCT cycle.
CCT cycle | Rs | QO (mS sn cm-2) | RO | Yw-O | QH (mS sn cm-2) | RH | Yw-H | Qrust (mS sn cm-2) | Rrust | Qdl (mS sn cm-2) | Rct | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Ω cm2) | YO | nO | (Ω cm2) | (mS s0.5 cm-2) | YH | nH | (Ω cm2) | (mS sn cm-2) | Yrust | nrust | (Ω cm2) | Ydl | ndl | (Ω cm2) | |
Tin-free steel | |||||||||||||||
0 | 36.60 | 6.3480 | 0.6688 | 5.157 | 0.8538 | 0.86950 | 0.9559 | 14.25 | - | - | - | - | 1.0280 | 0.9600 | 72.41 |
4 | 20.01 | - | - | - | - | 0.11520 | 0.6051 | 24.85 | 0.0026 | 2.341 | 0.1919 | 29.97 | 0.1176 | 0.1775 | 9.450 |
8 | 19.21 | - | - | - | - | 0.00005 | 0.9098 | 33.68 | 100.70 | 72.13 | 0.4560 | 41.17 | 26.520 | 0.2801 | 29.57 |
20 | 21.34 | - | - | - | - | 0.06155 | 0.3334 | 42.58 | 0.0626 | 32.19 | 0.5803 | 139.2 | 17.550 | 0.3863 | 160.6 |
60 | 21.59 | - | - | - | - | 12.6400 | 0.4419 | 43.33 | 2.0250 | 0.9437 | 0.4856 | 223.9 | 0.0052 | 0.4800 | 212.5 |
120 | 21.01 | - | - | - | - | 5.26300 | 0.3980 | 43.89 | 0.2394 | 2.582 | 0.6626 | 413.3 | 0.0041 | 0.5028 | 267.7 |
Tin-containing steel | |||||||||||||||
0 | 39.45 | 9.7840 | 0.1048 | 11.64 | 0.3876 | 0.53080 | 0.9199 | 50.09 | - | - | - | - | 0.9040 | 0.9800 | 210.4 |
4 | 21.05 | - | - | - | - | 0.15380 | 0.5947 | 28.58 | 0.0187 | 1.418 | 0.6576 | 25.08 | 0.0090 | 0.1815 | 13.97 |
8 | 20.62 | - | - | - | - | 0.00008 | 0.7834 | 37.53 | 0.0898 | 108.8 | 0.5184 | 47.42 | 35.220 | 0.2802 | 23.75 |
20 | 22.43 | - | - | - | - | 0.02632 | 0.3888 | 48.20 | 0.0693 | 15.12 | 0.3222 | 133.5 | 32.430 | 0.1877 | 156.7 |
60 | 22.09 | - | - | - | - | 12.1800 | 0.7992 | 53.30 | 0.0063 | 20.02 | 0.5729 | 190.7 | 1.3290 | 0.1094 | 232.7 |
120 | 21.84 | - | - | - | - | 12.8500 | 0.3548 | 53.50 | 0.0234 | 1.762 | 0.5205 | 188.1 | 0.2188 | 0.2195 | 230.3 |
|
[1] | Yuanjie Zhi, Tao Yang, Dongmei Fu. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels [J]. J. Mater. Sci. Technol., 2020, 49(0): 202-210. |
[2] | Yueming Fan, Wei Liu, Shimin Li, Thee Chowwanonthapunya, Banthukul Wongpat, Yonggang Zhao, Baojun Dong, Tianyi Zhang, Xiaogang Li. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion [J]. J. Mater. Sci. Technol., 2020, 39(0): 190-199. |
[3] | Xiao Lu, Yuwei Liu, Miaoran Liu, Zhenyao Wang. Corrosion behavior of copper T2 and brass H62 in simulated Nansha marine atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(9): 1831-1839. |
[4] | Hongguang Liu, Fuyong Cao, Guang-Ling Song, Dajiang Zheng, Zhiming Shi, Mathew S. Dargusch, Andrej Atrens. Review of the atmospheric corrosion of magnesium alloys [J]. J. Mater. Sci. Technol., 2019, 35(9): 2003-2016. |
[5] | Min Cao, Li Liu, Zhongfen Yu, Lei Fan, Ying Li, Fuhui Wang. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment [J]. J. Mater. Sci. Technol., 2019, 35(4): 651-659. |
[6] | Chuang Qiao, Lianfeng Shen, Long Hao, Xin Mu, Junhua Dong, Wei Ke, Jing Liu, Bo Liu. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(10): 2345-2356. |
[7] | Haigang Xiao, Wei Ye, Xiaoping Song, Yuantai Ma, Ying Li. Formation process of akaganeite in the simulated wet-dry cycles atmospheric environment [J]. J. Mater. Sci. Technol., 2018, 34(8): 1387-1396. |
[8] | Pan Chen, Lv Wangyan, Wang Zhenyao, Su Wei, Wang Chuan, Liu Shinian. Atmospheric Corrosion of Copper Exposed in a Simulated Coastal-Industrial Atmosphere [J]. J. Mater. Sci. Technol., 2017, 33(6): 587-595. |
[9] | Hongyan Wu, Linxiu Du, Zhengrong Ai, Xianghua Liu. Static Recrystallization and Precipitation Behavior of a Weathering Steel Microalloyed with Vanadium [J]. J. Mater. Sci. Technol., 2013, 29(12): 1197-1203. |
[10] | Hongyan Wu, Linxiu Du, Xianghua Liu. Dynamic Recrystallization and Precipitation Behavior of Mn-Cu-V Weathering Steel [J]. J Mater Sci Technol, 2011, 27(12): 1131-1138. |
[11] | Ruiling Jia,Chuanwei Yan,Fuhui Wang. Influence of Al Content on the Atmospheric Corrosion Behaviour of Magnesium-Aluminum Alloys [J]. J Mater Sci Technol, 2009, 25(02): 225-229. |
[12] | Andrej Atrens. Service Performance of Engineering Materials [J]. J Mater Sci Technol, 2005, 21(Supl.1): 81-85. |
[13] | Ye WAN, Chuanwei YAN, Chunan CAO, Jun TAN. Atmospheric Corrosion of Steel A3 Deposited with Ammonium Sulfate and in the Presence of Sulfur Dioxide [J]. J Mater Sci Technol, 2003, 19(05): 453-455. |
[14] | Qing QU, Chuanwei YAN, Lei ZHANG, Ye WAN, Chunan CAO. Influence of NaCl Deposition on Atmospheric Corrosion of A3 Steel [J]. J Mater Sci Technol, 2002, 18(06): 552-555. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||