J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (3): 313-322.DOI: 10.1016/j.jmst.2018.09.041
• Research Article • Previous Articles Next Articles
Yanchun Zhou*(), Huimin Xiang, Fu-Zhi Dai
Received:
2018-06-24
Revised:
2018-08-07
Accepted:
2018-08-17
Online:
2019-03-15
Published:
2019-01-18
Contact:
Zhou Yanchun
About author:
1 These authors contributed equally to this work.
Yanchun Zhou, Huimin Xiang, Fu-Zhi Dai. Y5Si3C and Y3Si2C2: Theoretically predicted MAX phase like damage tolerant ceramics and promising interphase materials for SiCf/SiC composites[J]. J. Mater. Sci. Technol., 2019, 35(3): 313-322.
Compound | Y5Si3C | Y3Si2C2 | ||
---|---|---|---|---|
Space group | P63/mcm (No.193) | Imma (No.74) | ||
Z formula units | 2 | 4 | ||
Density (g/cm3) | 4.55 | 4.55 | ||
Lattice constant (?) | Experimental | |||
a?=?8.414 [ c?=?6.369 | a?=?8.426 [ b?=?15.634 c?=?3.846 | |||
Theoretical | ||||
a?=?8.4681 c?=?6.3975 | a?=?8.4699 b?=?15.6971 c?=?3.8746 | |||
Atomic position | Experimental | |||
Y1 6g (0.27, 0, 1/4) Y2 4d (1/3, 2/3, 0) Si 6g (0.62, 0, 1/4) C 2b (0, 0, 0) | Y1 8g (0.25, 0.5943, 0.25) Y2 4e (0, 0.25, 0.1936) Si 8h (0, 0.0510, 0.2437) C 8i (0.1954, 0.25, 0.6300) | |||
Theoretical | ||||
Y1 6g (0.2231, 0, 1/4) Y2 4d (1/3, 2/3, 0) Si 6g (0.5904, 0, 1/4) C 2b (0, 0, 0) | Y1 8g (0.25, 0.5952, 0.25) Y2 4e (0, 0.25, 0.1969) Si 8h (0, 0.0510, 0.2434) C 8i (0.1956, 0.25, 0.6287) | |||
Bond length and population | Y5Si3C | |||
Bond | Population | Length (?) | ||
Y1—C | 0.39 | 2.4753 | ||
Y3Si2C2 | ||||
Bond | Population | Length (?) | ||
C—C | 1.47 | 1.3162 | ||
Y2—C | 0.43 | 2.3544 | ||
Si—Si | 0.94 | 2.4628 | ||
Y1—C | 0.04 | 2.5168 | ||
Y2—C | -0.02 | 2.8704 | ||
Y1—Si | 0.54 | 2.9382 |
Table 1 Experimental and geometry optimized lattice parameters of Y5Si3C and Y3Si2C2. Mulliken populations and bond lengths are also included.
Compound | Y5Si3C | Y3Si2C2 | ||
---|---|---|---|---|
Space group | P63/mcm (No.193) | Imma (No.74) | ||
Z formula units | 2 | 4 | ||
Density (g/cm3) | 4.55 | 4.55 | ||
Lattice constant (?) | Experimental | |||
a?=?8.414 [ c?=?6.369 | a?=?8.426 [ b?=?15.634 c?=?3.846 | |||
Theoretical | ||||
a?=?8.4681 c?=?6.3975 | a?=?8.4699 b?=?15.6971 c?=?3.8746 | |||
Atomic position | Experimental | |||
Y1 6g (0.27, 0, 1/4) Y2 4d (1/3, 2/3, 0) Si 6g (0.62, 0, 1/4) C 2b (0, 0, 0) | Y1 8g (0.25, 0.5943, 0.25) Y2 4e (0, 0.25, 0.1936) Si 8h (0, 0.0510, 0.2437) C 8i (0.1954, 0.25, 0.6300) | |||
Theoretical | ||||
Y1 6g (0.2231, 0, 1/4) Y2 4d (1/3, 2/3, 0) Si 6g (0.5904, 0, 1/4) C 2b (0, 0, 0) | Y1 8g (0.25, 0.5952, 0.25) Y2 4e (0, 0.25, 0.1969) Si 8h (0, 0.0510, 0.2434) C 8i (0.1956, 0.25, 0.6287) | |||
Bond length and population | Y5Si3C | |||
Bond | Population | Length (?) | ||
Y1—C | 0.39 | 2.4753 | ||
Y3Si2C2 | ||||
Bond | Population | Length (?) | ||
C—C | 1.47 | 1.3162 | ||
Y2—C | 0.43 | 2.3544 | ||
Si—Si | 0.94 | 2.4628 | ||
Y1—C | 0.04 | 2.5168 | ||
Y2—C | -0.02 | 2.8704 | ||
Y1—Si | 0.54 | 2.9382 |
Fig. 3. Electron density on (11ˉ00) and (112ˉ0) planes of Y5Si3C (a, b) and on (040) and (2901ˉ4) planes of Y3Si2C2 (c, d) near Fermi level, respectively. Y2 4deg, C 2px,Y1 4dt2g, Si 3pz like orbitials can be seen from Fig. 3(a) and (b); and Y2 4dt2g, C 2px′, C 2pz′, Y1 4dt2g, Y2 4dt2g like orbitials can be seen from Fig. 3(c) and (d). The unit for all distributions is electron/?3. A 2?×?1?×?2 cell is used for Fig. 3(a)-(c) and a 1?×?1?×?2 cell is used for Fig. 3(d).
Fig. 4. Electron density maps from -2.31 to -1.01?eV below Fermi level on (11ˉ00) plane of Y5Si3C (a) and -2.62 to -2.10?eV below Fermi level on (2901ˉ4) plane of Y3Si2C2 (b). The unit for all distributions is electron/?3.
Compound | c11 | c22 | c33 | c44 | c55 | c66 | c12 | c13 | c23 | Pa | Pb | Pc |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Y5Si3C | 165 | 165 | 115 | 50 | 50 | 57 | 51 | 42 | 42 | -8 | -8 | -6 |
Y3Si2C2 | 121 | 191 | 154 | 44 | 100 | 45 | 61 | 88 | 36 | -12 | -8 | +16 |
Cr5Si3B [ | 418 | 418 | 346 | 148 | 148 | 143 | 131 | 142 | 142 | -6 | -6 | -12 |
Hf5Si3B [ | 332 | 332 | 298 | 110 | 110 | 115 | 102 | 88 | 88 | -22 | -22 | -13 |
Cr2AlC [ | 385 | 385 | 360 | 154 | 154 | 132 | 94 | 118 | 118 | -36 | -36 | -38 |
Ti3SiC2 [ | 354 | 354 | 344 | 165 | 165 | 131 | 91 | 103 | 103 | -62 | -62 | -40 |
Rh2YSi [ | 277 | 277 | 291 | 63 | 63 | 100 | 76 | 89 | 89 | +26 | +26 | -24 |
Ir2YSi [ | 353 | 353 | 328 | 70 | 70 | 121 | 112 | 102 | 102 | +32 | +32 | -9 |
h-BNexp [ | 811 | 811 | 27 | 7.7 | 7.7 | 321 | 169 | 0 | 0 | -7.7 | -7.7 | -152 |
h-BN cal [ | 803 | 803 | 31 | 3 | 3 | 267 | 268 | 3 | 3 | 0 | 0 | +1 |
TiC [ | 507 | 507 | 507 | 172 | 172 | 172 | 121 | 121 | 121 | -51 | -51 | -51 |
ZrC [ | 452 | 452 | 452 | 155 | 155 | 155 | 107 | 107 | 107 | -48 | -48 | -48 |
HfC [ | 527 | 527 | 527 | 160 | 160 | 160 | 107 | 107 | 107 | -53 | -53 | -53 |
Table 2 Second order elastic constants cij and Cauchy pressure of Y5Si3C, Y3Si2C2, Cr5Si3B, Hf5Si3B, Cr2AlC, Ti3SiC2, Rh2YSi, Ir2YSi, h-BN, TiC, ZrC and HfC (GPa).
Compound | c11 | c22 | c33 | c44 | c55 | c66 | c12 | c13 | c23 | Pa | Pb | Pc |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Y5Si3C | 165 | 165 | 115 | 50 | 50 | 57 | 51 | 42 | 42 | -8 | -8 | -6 |
Y3Si2C2 | 121 | 191 | 154 | 44 | 100 | 45 | 61 | 88 | 36 | -12 | -8 | +16 |
Cr5Si3B [ | 418 | 418 | 346 | 148 | 148 | 143 | 131 | 142 | 142 | -6 | -6 | -12 |
Hf5Si3B [ | 332 | 332 | 298 | 110 | 110 | 115 | 102 | 88 | 88 | -22 | -22 | -13 |
Cr2AlC [ | 385 | 385 | 360 | 154 | 154 | 132 | 94 | 118 | 118 | -36 | -36 | -38 |
Ti3SiC2 [ | 354 | 354 | 344 | 165 | 165 | 131 | 91 | 103 | 103 | -62 | -62 | -40 |
Rh2YSi [ | 277 | 277 | 291 | 63 | 63 | 100 | 76 | 89 | 89 | +26 | +26 | -24 |
Ir2YSi [ | 353 | 353 | 328 | 70 | 70 | 121 | 112 | 102 | 102 | +32 | +32 | -9 |
h-BNexp [ | 811 | 811 | 27 | 7.7 | 7.7 | 321 | 169 | 0 | 0 | -7.7 | -7.7 | -152 |
h-BN cal [ | 803 | 803 | 31 | 3 | 3 | 267 | 268 | 3 | 3 | 0 | 0 | +1 |
TiC [ | 507 | 507 | 507 | 172 | 172 | 172 | 121 | 121 | 121 | -51 | -51 | -51 |
ZrC [ | 452 | 452 | 452 | 155 | 155 | 155 | 107 | 107 | 107 | -48 | -48 | -48 |
HfC [ | 527 | 527 | 527 | 160 | 160 | 160 | 107 | 107 | 107 | -53 | -53 | -53 |
Compound | B | G | E | v | Ex | Ey | Ez | G/B |
---|---|---|---|---|---|---|---|---|
Y5Si3C | 78 | 52 | 128 | 0.227 | 141 | 141 | 99 | 0.666 |
Y3Si2C2 | 93 | 50 | 127 | 0.272 | 61 | 160 | 89 | 0.537 |
Cr5Si3B [ | 223 | 138 | 343 | 0.243 | 344 | 344 | 272 | 0.619 |
Hf5Si3B [ | 168 | 112 | 275 | 0.227 | 287 | 287 | 262 | 0.666 |
Cr2AlC [ | 188 | 143 | 346 | 0.210 | 337 | 337 | 301 | 0.718 |
Ti3SiC2 [ | 183 | 141 | 337 | 0.193 | 312 | 312 | 296 | 0.770 |
Rh2YSi [ | 150 | 82 | 208 | 0.269 | 240 | 240 | 246 | 0.570 |
Ir2YSi [ | 185 | 97 | 248 | 0.277 | 301 | 301 | 283 | 0.524 |
TiC [ | 250 | 180 | 435 | 0.210 | - | - | - | 0.720 |
ZrC [ | 222 | 162 | 391 | 0.206 | - | - | - | 0.729 |
HfC [ | 247 | 189 | 461 | 0.209 | - | - | - | 0.765 |
Table 3 Computed bulk modulus B, shear modulus G, Young’s modulus E, anisotropic Young’s modulus Ex, Ey, Ez (GPa), Poisson’s ratio v and Pugh’s ratio G/B of Y5Si3C, Y3Si2C2, Cr5Si3B, Hf5Si3B, Cr2AlC, Ti3SiC2, Rh2YSi, Ir2YSi, TiC, ZrC and HfC.
Compound | B | G | E | v | Ex | Ey | Ez | G/B |
---|---|---|---|---|---|---|---|---|
Y5Si3C | 78 | 52 | 128 | 0.227 | 141 | 141 | 99 | 0.666 |
Y3Si2C2 | 93 | 50 | 127 | 0.272 | 61 | 160 | 89 | 0.537 |
Cr5Si3B [ | 223 | 138 | 343 | 0.243 | 344 | 344 | 272 | 0.619 |
Hf5Si3B [ | 168 | 112 | 275 | 0.227 | 287 | 287 | 262 | 0.666 |
Cr2AlC [ | 188 | 143 | 346 | 0.210 | 337 | 337 | 301 | 0.718 |
Ti3SiC2 [ | 183 | 141 | 337 | 0.193 | 312 | 312 | 296 | 0.770 |
Rh2YSi [ | 150 | 82 | 208 | 0.269 | 240 | 240 | 246 | 0.570 |
Ir2YSi [ | 185 | 97 | 248 | 0.277 | 301 | 301 | 283 | 0.524 |
TiC [ | 250 | 180 | 435 | 0.210 | - | - | - | 0.720 |
ZrC [ | 222 | 162 | 391 | 0.206 | - | - | - | 0.729 |
HfC [ | 247 | 189 | 461 | 0.209 | - | - | - | 0.765 |
Fig. 5. Spatial distribution of Young’s modulus E of Y5Si3C (a) and Y3Si2C2 (b) and planar projections on (0001) and (112ˉ0) planes of Y5Si3C (c) and on (100), (010) and (001) planes of Y3Si2C2 (d).
Fig. 7. (a) Crystal structures of Y3Si2C2 (a) viewed in (010) direction (edge-shared octahedra are shown) and (b) electron density difference map on (040) plane of Y3Si2C2 (The unit is electron/?3).
|
[1] | Zheng Chen, Xiao Sun, Zongling Ding, Yongqing Ma. Manganese ferrite nanoparticles with different concentrations: Preparation and magnetism [J]. J. Mater. Sci. Technol., 2018, 34(5): 842-847. |
[2] | Zhou Yanchun, Xiang Huimin, Wang Xiaohui, Sun Wei, Dai Fu-Zhi, Feng Zhihai. Electronic structure and mechanical properties of layered compound YB2C2: A promising precursor for making two dimensional (2D) B2C2 nets [J]. J. Mater. Sci. Technol., 2017, 33(9): 1044-1054. |
[3] | Zhou Yanchun, Dai Fuzhi, Xiang Huimin, Liu Bin, Feng Zhihai. Shear anisotropy: Tuning high temperature metal hexaborides from soft to extremely hard [J]. J. Mater. Sci. Technol., 2017, 33(11): 1371-1377. |
[4] | Yanchun Zhou, Huimin Xiang, Zhihai Feng, Zhongping Li. General Trends in Electronic Structure, Stability, Chemical Bonding and Mechanical Properties of Ultrahigh Temperature Ceramics TMB2 (TM = transition metal) [J]. J. Mater. Sci. Technol., 2015, 31(3): 285-294. |
[5] | P. Avramov, A.A. Kuzubov, S. Sakai, S. Entani, H. Naramoto, N. Eliseeva. Spin States of 2D Nanocomposites of Ni and V Nanoclusters on Hexagonal h-BN, BC3 and Graphene [J]. J. Mater. Sci. Technol., 2015, 31(10): 979-985. |
[6] | O.M. Ozkendir, E. Cengiz,E.Tlrasoglu, Mehmet Kaya, I.H. Karahan, N. Orhan. Traces of Defects in the Electronic Structure of Porous Ni–Ti Alloys [J]. J. Mater. Sci. Technol., 2013, 29(4): 344-348. |
[7] | Guili LIU, Rongde LI, Zhenping ZHOU. Study on Modification Mechanism of Rare Earth in ZA27 Cast Alloy with Electronic Theory and Molecular Dynamics Method [J]. J Mater Sci Technol, 2004, 20(05): 586-588. |
[8] | Zhufeng HOU, Aiyu LI, Zizhong ZHU, Meichun HUANG. Ab Initio Calculations of the Electronic Structures of Copper Pyrites CuS2, CuSe2 and CuTe2 [J]. J Mater Sci Technol, 2004, 20(04): 429-431. |
[9] | Li CHEN, Hua LI, Liangmo MEI. Electronic Structure of New Superconducting Perovskite MgCNi3 [J]. J Mater Sci Technol, 2004, 20(02): 203-205. |
[10] | Xuyan XUE, Chunlei WANG, Weilie ZHONG. Geometric and Electronic Structure of Squaric Acid from DFT Calculation [J]. J Mater Sci Technol, 2004, 20(02): 206-208. |
[11] | Christina Scheu, Min Gao, Manfred Rühle. Interfacial Electronic Structure of Thin Cu Films Grown on Ar+-ion Sputter-cleaned a-Al2O3 Substrates [J]. J Mater Sci Technol, 2002, 18(02): 117-120. |
[12] | Wen DENG Liangyue XIONG Chiwei LUNG International Centre for Materials Physics,Institute of Metal Research,Academia Sinica,Shenyang,110015,ChinaShuhe WANG Jianting GUO Institute of Metal Research,Academia Sinica,Shenyang,110015,China. Correlation of the Mechanical Properties of Polycrystalline Ni_3Al Alloys with Their Electronic Structure [J]. J Mater Sci Technol, 1993, 9(3): 226-228. |
[13] | Jirong SUN Yingzi ZHANG Guanghui RAO Yong LIU Shichao LIU Institute of Physics,Academia Sinica,Beijing,100090,China. Resistance Behaviour of Nanocrystal Nickel [J]. J Mater Sci Technol, 1993, 9(3): 185-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||