J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (12): 2384-2391.DOI: 10.1016/j.jmst.2018.06.005
• Orginal Article • Previous Articles Next Articles
					
													Tinghuan Wuac, Lixian Sunabc*(
), Fen Xuabc*(
), Dan Caiabc
												  
						
						
						
					
				
Received:2017-08-09
															
							
																	Revised:2017-09-26
															
							
																	Accepted:2017-10-30
															
							
																	Online:2018-12-20
															
							
																	Published:2018-11-15
															
						Contact:
								Sun Lixian,Xu Fen   
													Tinghuan Wu, Lixian Sun, Fen Xu, Dan Cai. Nitrogen-doped hierarchical porous carbon materials derived from diethylenetriaminepentaacetic acid (DTPA) for supercapacitors[J]. J. Mater. Sci. Technol., 2018, 34(12): 2384-2391.
																													Fig. 1. SEM images of (a) NPC-0.25-600, (b) NPC-0.50-600, (c) NPC-0.75-600 and (d) NPC-1.00-600, (e) and (f) TEM images of NPC-0.50-800 at different magnifications.
																													Fig. 2. (a) Nitrogen adsorption-desorption isotherms at 77?K, (b) DFT pore size distributions of NPC-0.00-600, NPC-0.25-600, NPC-0.50-600, NPC-0.75-600, and NPC-1.00-600.
| Sample | SBET (m2 g-1)a | Vtotalb (m3 g-1) | Dc (nm) | C (at.%) | N (at.%) | O (at.%) | 
|---|---|---|---|---|---|---|
| NPC-0.00-600 | 0 | 0 | 0 | 72.66 | 14.09 | 13.25 | 
| NPC-0.25-600 | 1126 | 0.49 | 2.3 | 66.68 | 9.45 | 19.71 | 
| NPC-0.50-600 | 1751 | 0.85 | 1.2 | 59.30 | 8.40 | 27.49 | 
| NPC-0.75-600 | 1072 | 0.75 | 1.1 | 63.78 | 4.32 | 23.35 | 
| NPC-1.00-600 | 1620 | 1.07 | 1.2 | 65.92 | 4.10 | 21.22 | 
| NPC-0.50-500 | 858 | 0.38 | 2.3 | 58.37 | 9.36 | 21.16 | 
| NPC-0.50-600 | 1751 | 0.85 | 1.2 | 59.30 | 8.40 | 27.49 | 
| NPC-0.50-700 | 2392 | 1.35 | 1.3 | 65.05 | 7.98 | 23.34 | 
| NPC-0.50-800 | 3214 | 1.92 | 1.3 | 67.22 | 6.85 | 23.28 | 
Table 1 BET specific surface area, total pore volume, the average diameter of pore and elemental composition of the NPCS.
| Sample | SBET (m2 g-1)a | Vtotalb (m3 g-1) | Dc (nm) | C (at.%) | N (at.%) | O (at.%) | 
|---|---|---|---|---|---|---|
| NPC-0.00-600 | 0 | 0 | 0 | 72.66 | 14.09 | 13.25 | 
| NPC-0.25-600 | 1126 | 0.49 | 2.3 | 66.68 | 9.45 | 19.71 | 
| NPC-0.50-600 | 1751 | 0.85 | 1.2 | 59.30 | 8.40 | 27.49 | 
| NPC-0.75-600 | 1072 | 0.75 | 1.1 | 63.78 | 4.32 | 23.35 | 
| NPC-1.00-600 | 1620 | 1.07 | 1.2 | 65.92 | 4.10 | 21.22 | 
| NPC-0.50-500 | 858 | 0.38 | 2.3 | 58.37 | 9.36 | 21.16 | 
| NPC-0.50-600 | 1751 | 0.85 | 1.2 | 59.30 | 8.40 | 27.49 | 
| NPC-0.50-700 | 2392 | 1.35 | 1.3 | 65.05 | 7.98 | 23.34 | 
| NPC-0.50-800 | 3214 | 1.92 | 1.3 | 67.22 | 6.85 | 23.28 | 
																													Fig. 3. (a) XRD patterns and (b) Raman spectra of NPC-x-600 (x?=?0.25, 0.50, 0.75 and 1.00); (c) XPS spectra of NPC-x-600 (x?=?0.25, 0.50, 0.75 and 1.00); (d) proportions of each nitrogen type in the total N content of NPC-x-600 (x?=?0.25, 0.50, 0.75 and 1.00).
																													Fig. 4. (a) CV curves of NPC-x-600 (x?=?0, 0.25, 0.50, 0.75 and 1.00) electrodes at the scan rate of 50?mV s-1 and (b) GCD curves of NPC-x-600 (x?=?0, 0.25, 0.50, 0.75 and 1.00) electrodes at the current density of 1?A g-1. (c) CV curves and (d) GCD curves of the NPC-0.5-600 electrode at different scan rates and current densities. (e) and (f) Specific capacitance retention ratio at different current densities of NPC-x-600 (x?=?0, 0.25, 0.50, 0.75 and 1.00).
																													Fig. 5. (a) CV curves of NPC-0.5-t (t?=?500, 600, 700, 800 and 900) electrodes at the scan rate of 50?mV s-1 and (b) GCD curves of NPC-0.5-t (t?=?500, 600, 700, 800 and 900) electrodes at the current density of 1?A g-1; (c) CV curves NPC-0.5-800 electrode at the scan rate of at 5-150?mV s-1; (d) GCD curves of NPC-0.5-t (t?=?500, 600, 700, 800 and 900) electrodes at the current density of 0.5-10?A g-1; (e) The Nyquist impedance plots of NPC-0.5-t (t?=?500, 600, 700, 800 and 900); (f) The cycling performance of the NPC-0.5-800 electrode collected at a current density of 10?A g-1 for 5000 cycles.
 
  | 
									
| [1] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. | 
| [2] | Licheng Zhao, Ping Zhang, Yanan Zhang, Zhi Zhang, Lei Yang, Zhi-Gang Chen. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 54(0): 69-76. | 
| [3] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. | 
| [4] | Lu Liu, Xi Hu, Hong-Yan Zeng, Mo-Yu Yi, Shi-Gen Shen, Sheng Xu, Xi Cao, Jin-Ze Du. Preparation of NiCoFe-hydroxide/polyaniline composite for enhanced-performance supercapacitors [J]. J. Mater. Sci. Technol., 2019, 35(8): 1691-1699. | 
| [5] | Nadir Ouldhamadouche, Amine Achour, Raul Lucio-Porto, Mohammad Islam, Shahram Solaymani, Ali Arman, Azin Ahmadpourian, Hamed Achour, Laurent Le Brizoual, Mohamed Abdou Djouadi, Thierry Brousse. Electrodes based on nano-tree-like vanadium nitride and carbon nanotubes for micro-supercapacitors [J]. J. Mater. Sci. Technol., 2018, 34(6): 976-982. | 
| [6] | Yuemei Chen, Guoxiong Zhang, Jingyuan Zhang, Haibo Guo, Xin Feng, Yigang Chen, . Synthesis of porous carbon spheres derived from lignin through a facile method for high performance supercapacitors [J]. J. Mater. Sci. Technol., 2018, 34(11): 2189-2196. | 
| [7] | Liutauras Marcinauskas, Zydrunas Kavaliauskas, Vitas Valincius. Carbon and Nickel Oxide/Carbon Composites as Electrodes for Supercapacitors [J]. J. Mater. Sci. Technol., 2012, 28(10): 931-936. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
			   WeChat
			