Please wait a minute...
J Mater Sci Technol  2004, Vol. 20 Issue (04): 457-459    DOI:
Research Articles Current Issue | Archive | Adv Search |
Influence of Alternative Magnetic Field on the Diffusion of Al and Mg
Xiaotao LIU, Jianzhong CUI, Yanhui GUO, Xiaoming WU, Jun ZHANG
The Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110004, China
Download:  HTML  PDF(499KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The influence of an alternative magnetic field on the growth of the diffusion of Al and Mg in Al-Mg diffusion couple is studied. The diffusion zone is composed of two intermediate phases, namely β and γ phase. Thickness of each intermediate phase is examined. The results show that the alternative magnetic field increase the thicknesses of β and γ phase zone and the layer growth of β and γ phase obeys the parabolic rate law. The growth rate of the β and γ phase are increased with the application of the alternative magnetic field. This change is manifested through a change in the frequency factor k0 and not through a change in the activation energy Q. The frequency factor k0 for intermediate phase growth with an alternative magnetic field is 39.95 cm2/s for γ phase and 2.84×10-4 cm2/s for β phase compared with those without the magnetic field is 22.4 cm2/s for γ phase and 1.53×10-4 cm2/s for β phase.
Key words:  Alternative magnetic field      Al-Mg Couple      Intermediate phase      Thickness      Diffusion      
Received:  01 January 1900     
Corresponding Authors:  Xiaotao LIU     E-mail:  lxtandm@sina.com

Cite this article: 

Xiaotao LIU, Jianzhong CUI, Yanhui GUO, Xiaoming WU, Jun ZHANG. Influence of Alternative Magnetic Field on the Diffusion of Al and Mg. J Mater Sci Technol, 2004, 20(04): 457-459.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2004/V20/I04/457

[1] M.Furui, Y.Kojima and M.Matsuo: ISIJ International, 1993, 33(3) , 400.
[2] M.Shimotomai and K.Maruta: Scripta Mater., 2000, 42, 499.
[3] S.Kawai: Mater. Trans., 2001, 42, 275.
[4] Shigeo Asai: ISIJ International, 1989, 29(12) , 981.
[5] B.J.Zhang, J.Z.Cui and G.M.Lu: Mater. Lett., 2003, 57, 1707.
[6] Chunyan BAN: Ph.D. Thesis, Northeastern University,Shenyang, 2002. (in Chinese)
[7] M.Hansen and K.Auderko: Constitution of Binary Alloys, Mc-Graw Hill, New York, 1958, 105.
[8] Shimin HAO: J. Mater. Metall., 2002, 1(3) , 166. (in Chinese)
[9] S.Samson: Acta Cryst., 1965, 19, 401.
[10] F.Laves and K.Moeller: Z. Metallk., 1938, 30, 232.
[11] E.Fromm: Z. Metallk., 1966, 57, 60.
[12] C.Wagner: Acta Metall., 1969, 17, 99.
[1] H. Chen, A. Rushworth. Effects of oxide stringers on the β-phase depletion behaviour in thermally sprayed CoNiCrAlY coatings during isothermal oxidation[J]. 材料科学与技术, 2020, 45(0): 108-116.
[2] S.M. Liang, H.M. Ji, X.W. Li. Thickness-dependent mechanical properties of nacre in Cristaria plicata shell: Critical role of interfaces[J]. 材料科学与技术, 2020, 44(0): 1-8.
[3] Honglei Hu, Mingjiu Zhao, Lijian Rong. Retarding the precipitation of η phase in Fe-Ni based alloy through grain boundary engineering[J]. 材料科学与技术, 2020, 47(0): 152-161.
[4] H.X. Zeng, Z.W. Liu, J.S. Zhang, X.F. Liao, H.Y. Yu. Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process[J]. 材料科学与技术, 2020, 36(0): 50-54.
[5] Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy[J]. 材料科学与技术, 2020, 45(0): 59-69.
[6] Lanlan Yang, Minghui Chen, Jinlong Wang, Yanxin Qiao, Pingyi Guo, Shenglong Zhu, Fuhui Wang. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation[J]. 材料科学与技术, 2020, 45(0): 49-58.
[7] Yue Zhao, Kai Wang, Shuang Yuan, Yonghui Ma, Guojian Li, Qiang Wang. The accelerating nanoscale Kirkendall effect in Co films-native oxide Si (100) system induced by high magnetic fields[J]. 材料科学与技术, 2020, 46(0): 127-135.
[8] Chuanbing Zhuang, Zhigang Xu, Shangyu Huang, Yu Xia, Chuanbin Wang, Qiang Shen. In situ synthesis of a porous high-Mn and high-Al steel by a novel two-step pore-forming technique in vacuum sintering[J]. 材料科学与技术, 2020, 39(0): 82-88.
[9] Yuling Liu, Cong Zhang, Changfa Du, Yong Du, Zhoushun Zheng, Shuhong Liu, Lei Huang, Shiyi Wen, Youliang Jin, Huaqing Zhang, Fan Zhang, George Kaptay. CALTPP: A general program to calculate thermophysical properties[J]. 材料科学与技术, 2020, 42(0): 229-240.
[10] Zhenquan Shen, Ming Zhao, Dong Bian, Danni Shen, Xiaochen Zhou, Jianing Liu, Yang Liu, Hui Guo, Yufeng Zheng. Predicting the degradation behavior of magnesium alloys with a diffusion-based theoretical model and in vitro corrosion testing[J]. 材料科学与技术, 2019, 35(7): 1393-1402.
[11] Jing Xue, Shenbao Jin, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Understanding formation of Mg-depletion zones in Al-Mg alloys under high pressure torsion[J]. 材料科学与技术, 2019, 35(5): 858-864.
[12] S.L. Xie, Z.B. Wang, K. Lu. Diffusion behavior of Cr in gradient nanolaminated surface layer on an interstitial-free steel[J]. 材料科学与技术, 2019, 35(3): 460-464.
[13] Changjiu Chen, Kaikin Wong, Rithin P. Krishnan, Lei Zhifeng, Dehong Yu, Zhaoping Lu, Suresh M. Chathoth. Highly collective atomic transport mechanism in high-entropy glass-forming metallic liquids[J]. 材料科学与技术, 2019, 35(1): 44-47.
[14] Xixi Niu, Haoqiang Zhang, Zhiliang Pei, Nanlin Shi, Chao Sun, Jun Gong. Measurement of interfacial residual stress in SiC fiber reinforced Ni-Cr-Al alloy composites by Raman spectroscopy[J]. 材料科学与技术, 2019, 35(1): 88-93.
[15] Li-Yin Gao, Hao Zhang, Cai-Fu Li, Jingdong Guo, Zhi-Quan Liu. Mechanism of improved electromigration reliability using Fe-Ni UBM in wafer level package[J]. 材料科学与技术, 2018, 34(8): 1305-1314.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.