Please wait a minute...
J Mater Sci Technol  2004, Vol. 20 Issue (04): 451-453    DOI:
Research Articles Current Issue | Archive | Adv Search |
On the Strength of Silicon Carbide Particulate Reinforced Aluminium Alloy Matrix Composites
Mingjiu ZHAO, Yue LIU, Liqing CHEN, Jing BI
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(283KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In the present study, the modified continuum model, quench strengthening and dislocation pile-up model was respectively used to estimate the yield strength of SiCp/Al composites. The experimental results showed that the modified shear lag model or quench strengthening model would underestimate the yield strength of SiCp/Al composites. However, the modified Hall-Petch correlation on the basis of the dislocation pile-up model, expressed as σcy = 244 + 371λ-1/2, fitted very well with the experimental data, which indicated that the strength increase of SiCp/Al composites might be due to the direct blocking of dislocation motion by the particulate-matrix interface. Namely, the dislocation pile-up is the most possible strengthening mechanism for SiCp/Al composites.
Key words:  Silicon carbide particulate      Composites      Shear lag model      Quench strengthening model...      
Received:  01 January 1900     
Corresponding Authors:  Mingjiu ZHAO     E-mail:  mjzhao@imr.ac.cn

Cite this article: 

Mingjiu ZHAO, Yue LIU, Liqing CHEN, Jing BI. On the Strength of Silicon Carbide Particulate Reinforced Aluminium Alloy Matrix Composites. J Mater Sci Technol, 2004, 20(04): 451-453.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2004/V20/I04/451

[1] J.A.Hooker and P.J.Doorbar: Mater. Technol., 2000, 16, 725.
[2] J.Goni, Imitxelena and J.Coleto: Mater. Technol., 2000, 16,743.
[3] D.J.Lloyd: Inter. Mater. Rev., 1994, 39, 1.
[4] H.J.Rack: Adv. Mater. Manuf. Process, 1988, 3, 327.
[5] R.J.Arsenault and S.B.Wu: Scripta Metall. Mater., 1988, 22,767.
[6] A.B.Pandery, B.S.Majumdar and D.B.Miracle: Metall. Mater.Trans., A, 2000, 31A(3) , 921.
[7] B.S.Majumdar and A.B.Pandery: Metall. Mater. Trans., A,2000, 31A(3) , 937.
[8] K.K.Chawla, A.H.Esmaeili, A.K.Datye and A.K.Vasudevan:Scripta Metall. Metar., 1991, 25, 1315.
[9] Mary Vogelsang, R.J.Arsenault and R.M.Fisher: Metall.Mater. Trans., A, 1986, 1TA(3) , 379.
[10] R.J.Aresenault, L.Wang and C.R.Feng: Acta Metall Mater.,1991, 39, 47.
[11] V.K.Varma, S.V.Kamat and V.V.Kutumbarao: Mater. Tech-nol, 2001, 17, 93.
[12] M.Geni and M.Kikuchi: Acta Mater., 1998, 46, 3125.
[13] D.J.Lloyd: Acta Metall Mater., 1991, 39, 59.
[14] M.Taya and R.J.Aresenault: Scripta Metall. Metar., 1987, 21,349.
[15] Vijay K.Varma, Y.R.Mahajan and V.V.Kutumbarao: ScriptaMetall. Metar., 1997, 37, 485.
[16] H.L.Cox: J. Appl. Phys., 1952, 3, 72.
[17] V.C.Nardone and K.M.Prewo: Scripta Metall. Metar., 1986,20, 43.
[18] H.Fukuda and T.W.Chou: 3. Mater. Sci., 1982, 17, 1003.
[19] R.J..Arsenault and N.Shi: Mater. Sci. Eng., 1986, 81, 175.
[20] R.J.Arsenault: Mater. Sci. Eng., 1984, 64, 171.
[21] W.J.Miller and F.J.Humpherys: Scripta Metall. Metar., 1991, 25, 33.
[22] T.J.Wang and H.Z.Ji: Acta Mater. Comp. Sin., 2001, 18(3) ,52.
[23] N.J.Petch: J. Iron Steel Inst, 1953, 174, 25.
[24] J.D.Eshelby, F.C.Franck and F.R.N.Narbarro: Phil. Mag.,1951, 42, 351.
[25] M.F.Ashby: Strengthening Methods in Crystals, eds. A.Kellyand R.B.Nicholson, Elsevier, Amsterdam, 1971 184.
[26] P.D.Funkenbusch and T.H.Courtney: Scripta Metall. Mater.,1981, 15, 1349.
[27] W.A.Spitzig, A.R.Pelton and F.C.Laabs: Acta Metal Mater.,1987, 35, 2427.
[1] Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics[J]. 材料科学与技术, 2020, 40(0): 135-145.
[2] Yaqi Shan, Mingliang Wang, Zengliang Shi, Milan Lei, Xiaoxuan Wang, Fu-Gen Wu, Huan-Huan Ran, Gowri Manohari Arumugam, Qiannan Cui, Chunxiang Xu. SERS-encoded nanocomposites for dual pathogen bioassay[J]. 材料科学与技术, 2020, 43(0): 161-167.
[3] Wang Zhongren, Gao Quanbin, Lv Peng, Li Xiuwan, Wang Xinghui, Qu Baihua. Facile fabrication of core-shell Ni3Se2/Ni nanofoams composites for lithium ion battery anodes[J]. 材料科学与技术, 2020, 38(0): 119-124.
[4] Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties[J]. 材料科学与技术, 2020, 38(0): 86-92.
[5] Oluwafunmilola Ola, Yu Chen, Qijian Niu, Yongde Xia, Tapas Mallick, Yanqiu Zhu. Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage[J]. 材料科学与技术, 2020, 36(0): 70-78.
[6] Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models[J]. 材料科学与技术, 2020, 36(0): 176-189.
[7] P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. 材料科学与技术, 2020, 45(0): 98-107.
[8] Yan Xing, Jing Cheng, Jian Wu, Mengfei Zhang, Xing-ao Li, Wei Pan. Direct electrospinned La2O3 nanowires decorated with metal particles: Novel 1 D adsorbents for rapid removal of dyes in wastewater[J]. 材料科学与技术, 2020, 45(0): 84-91.
[9] Tielong Han, Enzuo Liu, Jiajun Li, Naiqin Zhao, Chunnian He. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study[J]. 材料科学与技术, 2020, 46(0): 21-32.
[10] Xing Zhou, Jian Su, Chenxi Wang, Changqing Fang, Xinyu He, Wanqing Lei, Chaoqun Zhang, Zhigang Huang. Design, preparation and measurement of protein/CNTs hybrids: A concise review[J]. 材料科学与技术, 2020, 46(0): 74-87.
[11] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[12] Kaustubh Bawane, Kathy Lu. Microstructure evolution of nanostructured ferritic alloy with and without Cr3C2 coated SiC at high temperatures[J]. 材料科学与技术, 2020, 43(0): 126-134.
[13] Yangtao Zhou, Yuning Zan, Shijian Zheng, Xiaohong Shao, Qianqian Jin, Bo Zhang, Quanzhao Wang, Bolv Xiao, Xiuliang Ma, Zongyi Ma. Thermally stable microstructures and mechanical properties of B4C-Al composite with in-situ formed Mg(Al)B2[J]. 材料科学与技术, 2019, 35(9): 1825-1830.
[14] Haichao Sun, Zhiliang Ning, Jingli Ren, Weizhong Liang, Yongjiang Huang, Jianfei Sun, Xiang Xue, Gang Wang. Serration and shear avalanches in a ZrCu based bulk metallic glass composite in different loading methods[J]. 材料科学与技术, 2019, 35(9): 2079-2085.
[15] Xizhou Kai, Shuoming Huang, Lin Wu, Ran Tao, Yanjie Peng, Zemin Mao, Fei Chen, Guirong Li, Gang Chen, Yutao Zhao. High strength and high creep resistant ZrB2/Al nanocomposites fabricated by ultrasonic-chemical in-situ reaction[J]. 材料科学与技术, 2019, 35(9): 2107-2114.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.