Please wait a minute...
J Mater Sci Technol  2004, Vol. 20 Issue (04): 435-438    DOI:
Research Articles Current Issue | Archive | Adv Search |
Processing and Sintering of Agglomerate-free CaO-ZrO2 Powder
Liping LIANG, Shue DANG , Dong WU, Yuhan SUN
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
Download:  HTML  PDF(500KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Coprecipitation supercritical fluid drying technology has been employed to synthesize calcia-stabilized zirconia ultrafine powder with low-cost inorganic salts as the starting materials. The sintering behaviors of these powders were also investigated. The results showed that supercritical fluid drying could effectively alleviate the hard agglomeration of grains during the gel drying process, and the morphology of the powder retained the network texture of the original gel. The resulting particles were characterized by small particle size (5~20 nm), better monodispersity and high surface area, which gave rise to high activity and sinterability. Consequently, these powders could readily be compacted into the desired shape and their densification could be carried out in shorter time and at lower temperatures. For instance, nanometer-sized powder calcined at 600ºC for 2 h could be cold-pressed into a green body and sintered at 1100º for 0.5 h to attain a dense body with bulk density of 5.9718 g/cm3 and specific pore volume of 0.0008 cm3/g.
Key words:  Calcia-stabilized zircornia      Ultrafine powder      Supercritical fluid drying      Sintering      
Received:  01 January 1900     
Corresponding Authors:  Yuhan SUN     E-mail:

Cite this article: 

Liping LIANG, Shue DANG, Dong WU, Yuhan SUN. Processing and Sintering of Agglomerate-free CaO-ZrO2 Powder. J Mater Sci Technol, 2004, 20(04): 435-438.

URL:     OR

[1] C.L.Hu and Mohamed N.Rahaman: J. Am. Ceram. Soc., 1992,75(8) , 2066.
[2] Nguyen Q.Minh: J. Am. Ceram. Soc., 1993, 76(3) , 563.
[3] Y.H.Lin, Z.L.Tang and Z.T.Zhang: J. Am. Ceram. Soc., 2001,83(11) , 2869.
[4] Senzaki Yoshihide: J. Am .Ceram. Soc., 1995, 78(11) , 2973.
[5] Y.Q.Zheng: J. Am. Ceram. Soc., 2001, 83(10) , 2634.
[6] Peter D.Southon, John R.Bartlett, James L.Woolfrey andBesim Ben-Nissan: Chem. Mater., 2002, 14, 4313.
[7] J.A.Navio, M.C.Hidalgo, G.Colon and M.I.Litter: Langmuir,2001, 17, 202.
[8] S.S.Kistler: Nature, 1931, 127, 741.
[9] Carsten Stocker and Alfons Baiker: J. Noa-Cryst. Solids, 1998,223, 165.
[10] Hongwei XIANG: Ph. D. Thesis, Institute of Coal Chemistry,Chinese Academy of Sciences, 1994. (in Chinese)
[11] G.Y.Guo: J. Am. Ceram. Soc., 1992, 75(5) , 1294.
[12] P.Li and I.W.Chen: J. Am. Ceram. Soc., 1994, 77(1) , 118.
[1] Wanjun Yu, Yongting Zheng, Yongdong Yu. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering[J]. 材料科学与技术, 2020, 41(0): 149-158.
[2] Chuanbing Zhuang, Zhigang Xu, Shangyu Huang, Yu Xia, Chuanbin Wang, Qiang Shen. In situ synthesis of a porous high-Mn and high-Al steel by a novel two-step pore-forming technique in vacuum sintering[J]. 材料科学与技术, 2020, 39(0): 82-88.
[3] Dongjun Wang, Hao Li, Wei Zheng. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering[J]. 材料科学与技术, 2020, 37(0): 46-54.
[4] Weiqiang Hu, Zhi Dong, Liming Yu, Zongqing Ma, Yongchang Liu. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering: Microstructure refinement and second phase particles regulation[J]. 材料科学与技术, 2020, 36(0): 84-90.
[5] Junfeng Gu, Ji Zou, Peiyan Ma, Hao Wang, Jinyong Zhang, Weimin Wang, Zhengyi Fu. Reactive sintering of B4C-TaB2 ceramics via carbide boronizing: Reaction process, microstructure and mechanical properties[J]. 材料科学与技术, 2019, 35(12): 2840-2850.
[6] Liu Qing, Wang Guofeng, Sui Xiaochong, Liu Yongkang, Li Xiao, Yang Jianlei. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering[J]. 材料科学与技术, 2019, 35(11): 2600-2607.
[7] Junho Lee, Dongju Lee, Myung Hoon Song, Wonhyuk Rhee, Ho Jin Ryu, Soon Hyung Hong. In-situ synthesis of TiC/Fe alloy composites with high strength and hardness by reactive sintering[J]. 材料科学与技术, 2018, 34(8): 1397-1404.
[8] Jinchuan Wu, Changshun Ruan, Yufei Ma, Yuanliang Wang, Yanfeng Luo. Vital role of hydroxyapatite particle shape in regulating the porosity and mechanical properties of the sintered scaffolds[J]. 材料科学与技术, 2018, 34(3): 503-507.
[9] Fariborz Tavangarian, Abbas Fahami, Guoqiang Li, Mohammadhassan Kazemi, Anoosha Forghani. Structural characterization and strengthening mechanism of forsterite nanostructured scaffolds synthesized by multistep sintering method[J]. 材料科学与技术, 2018, 34(12): 2263-2270.
[10] Gao Yan, Liu Fangzhou, Liu Dianguang, Liu Jinling, Wang Yiguang, An Linan. Electrical-field induced nonlinear conductive behavior in dense zirconia ceramic[J]. 材料科学与技术, 2017, 33(8): 897-900.
[11] Wang Qunchang, Chen Minghui, Shan Zhongmao, Sui Chengguo, Zhang Lin, Zhu Shenglong, Wang Fuhui. Comparative study of mechanical and wear behavior of Cu/WS2 composites fabricated by spark plasma sintering and hot pressing[J]. 材料科学与技术, 2017, 33(11): 1416-1423.
[12] Wu Ziyi, Zhang Jinyong, Shi Taojie, Zhang Fan, Lei Liwen, Xiao Han, Fu Zhengyi. Fabrication of laminated TiB2-B4C/Cu-Ni composites by electroplating and spark plasma sintering[J]. 材料科学与技术, 2017, 33(10): 1172-1176.
[13] Xiaopu Li, Chongyu Liu, Kun Luo, Mingzhen Ma, Riping Liu. Hot Deformation Behaviour of SiC/AA6061 Composites Prepared by Spark Plasma Sintering[J]. J. Mater. Sci. Technol., 2016, 32(4): 291-298.
[14] Xu Zhigang,A. Hodgson Michael,Cao Peng. Effects of Mechanical Milling and Sintering Temperature on the Densification, Microstructure and Tensile Properties of the Fe-Mn-Si Powder Compacts[J]. 材料科学与技术, 2016, 32(11): 1161-1170.
[15] Li R.T.,K. Murugan Vinod,Dong Z.L.,Khor K.A.. Comparative Study on the Corrosion Resistance of Al-Cr-Fe Alloy Containing Quasicrystals and Pure Al[J]. 材料科学与技术, 2016, 32(10): 1054-1058.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.