Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (7): 1103-1109    DOI: 10.1016/j.jmst.2017.12.006
Orginal Article Current Issue | Archive | Adv Search |
High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure
Jun Maab, Shaochun Tanga, Junaid Ali Syeda, Dongyun Suc, Xiangkang Menga()
aInstitute of Materials Engineering, National Laboratory of Solid State Microstructures, and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
bSchool of Mechatronics & Traffic Engineering, Nantong College of Science and Technology, Nantong 226007, China
cCollege of Mechanical Engineering, Nantong Vocational University, Nantong 226007, China
Download:  HTML  PDF 
Export:  BibTeX | EndNote (RIS)      

The sandwich-like structure of reduced graphene oxide/polyaniline (RGO/PANI) hybrid electrode was prepared by electrochemical deposition. Both the voltage windows and electrolytes for electrochemical deposition of PANI and RGO were optimized. In the composites, PANI nanofibers were anchored on the surface of the RGO sheets, which avoids the re-stacking of neighboring sheets. The RGO/PANI composite electrode shows a high specific capacitance of 466 F/g at 2 mA/cm2 than that of previously reported RGO/PANI composites. Asymmetric flexible supercapacitors applying RGO/PANI as positive electrode and carbon fiber cloth as negative electrode can be cycled reversibly in the high-voltage region of 0-1.6 V and displays intriguing performance with a maximum specific capacitance of 35.5 mF cm-2. Also, it delivers a high energy density of 45.5 mW h cm-2 at power density of 1250 mW cm-2. Furthermore, the asymmetric device exhibits an excellent long cycle life with 97.6% initial capacitance retention after 5000 cycles. Such composite electrode has a great potential for applications in flexible electronics, roll-up display, and wearable devices.

Key words:  Hybrid electrode      Asymmetric supercapacitor      Sandwich-like      Electrochemical reduced graphene oxide     
Received:  29 October 2017      Published:  22 July 2018

Cite this article: 

Jun Ma, Shaochun Tang, Junaid Ali Syed, Dongyun Su, Xiangkang Meng. High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure. J. Mater. Sci. Technol., 2018, 34(7): 1103-1109.

URL:     OR

Fig. 1.  Schematic diagram of preparing PANI/RGO composite electrode.
Fig. 2.  CV of (a) step a: electrochemical deposition of PANI, (b) step b: electrochemical reduced graphene oxide, (c) step c: electrochemical deposition of PANI.
Fig. 3.  SEM of (a) CC, (b) PANI(5)/CC, (c) PANI-RGO(10)-PANI/CC, (d) PANI-RGO(20)-PANI/CC, (e) PANI-RGO(30)-PANI/CC, (f) PANI-RGO(40)-PANI/CC.
Fig. 4.  (a) SEM of PANI-RGO(30)-PANI/CC composite electrode; (b) TEM of PANI-RGO(30)-PANI/CC (c) XRD patterns of pure graphite and exfoliated GO (d) XRD patterns of electrochemical reduced graphene oxide (ERGO) and chemical reduced graphene oxide (CRGO).
Fig. 5.  (a) CV curves of PANI-RGO(30)-PANI/CC at different scan rates of 5-100 mV/s; (b) CD curves of PANI-RGO(30)-PANI/CC at current of 2-20 mA/cm2 (1 M H2SO4 aqueous solution); (c) Nyquist plot of PANI-RGO(30)-PANI/CC; (d) the flexible composite film of PANI/RGO/CC.
Fig. 6.  (a) CV of PANI/RGO//CC asymmetric supercapacitor device; (b) CD of PANI/RGO//CC asymmetric supercapacitor device.
[1] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 14(2015) 271-279.
doi: 10.1038/nmat4170 pmid: 25532074
[2] X. Luan, Y. Wang, J. Mater. Sci. Technol 30 (2014) 839-846.
doi: 10.1016/j.jmst.2014.07.003
[3] P.W. Liu, Z. Jin, G. Katsukis, Science 353 (2016) 364-367.
doi: 10.1126/science.aaf4362
[4] K. Wang, H. Wu, Y. Meng, Z. Wei, Small 10 (2014) 14-31.
doi: 10.1002/smll.201301991 pmid: 23959804
[5] K. Halab Shaeli Iessa, Y. Zhang, G. Zhang, F. Xiao, S. Wang, J. Power Sources302 (2016) 92-97.
[6] G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41(2012) 797-828.
[7] S.Y. Wang, L. Ma, M.Y. Gan, S.N. Fu, W.Q. Dai, T. Zhou, X.W. Sun, H.H. Wang, H.Wang, J. Power Sources 299 (2015) 347-355.
[8] J.T. Zhang, J.W. Jiang, H.L. Li, X.S. Zhao, Energy Environ. Sci. 4(2011)4009-4015.
[9] H. Chen, L. Hu, Y. Yan, R. Chen, M. Chen, L. Wu, Adv. Energy Mater. 3(2013)1636-1646.
[10] Y.P. Lei, Q. Shi, C. Han, B. Wang, N. Wu, H. Wang, Y.D. Wang, Nano Res. 9(2016) 2498-2509.
[11] Y.Y. Li, L.J. Guo, Y.W. Wang, H.J. Li, Q. Song, J. Mater.Sci.Technol. 32(2016)419-424.
[12] Q. Shi, Y.D. Wang, Z.M. Wang, Y.P. Lei, B. Wang, N. Wu, C. Han, S. Xie, Y. Gou,Nano Res. 9(2016) 317-328.
[13] X.Q. Lin, W.D. Wang, Q.F. Lü, Y.Q. Jin, Q.L. Lin, R. Liu, J. Mater, Sci. Technol. 33(11) (2017) 1339-1345.
[14] Y.M. Ko, M. Kwon, W.K. Bae, B. Lee, S.W. Lee, J. Cho, Nat. Commun. 8(2017)536.
[15] M.Q. Xue, F.W. Li, J. Zhu, H. Song, M.N. Zhang, T.B. Cao, Adv. Funct. Mater. 22(2012) 1284-1290.
[16] A.K. Mishra, S. Ramaprabhu, J. Phys. Chem. C 115 (2011) 14006-14013.
[17] Q.Q. Zhang, Y. Li, Y.Y. Feng, W. Feng, Electrochim. Acta 90 (2013) 95-100.
[18] J.T. Zhang, X.S. Zhao, J. Phys. Chem. C 116 (2012) 5420-5426.
[19] G. Chen, Q.F. Lü, H.B. Zhao, J. Mater.Sci.Technol. 31(2015) 1101-1107.
[20] M.N. Hyder, S.W. Lee, F.C. Cebeci, D.J. Schmidt, Y.S. Horn, P.T. Hammond, ACSNano 5 (2011) 8552-8561.
[21] R. Tarushee Ahuja, D. Kumar, Sens. Actuators B 136 (2009) 275-286.
[22] E. Karaca, N. Ö. Pekmez, K. Pekmez, Electrochim. Acta 147 (2014) 545-556.
[23] A. Khosrozadeh, M.A. Darabi, M. Xing, Q. Wang, ACS Appl. Mater. Interfaces 8(2016) 11379-11389.
[24] N. Jabeen, Q.Y. Xia, M. Yang, H. Xia, ACS Appl. Mater. Interfaces 8 (2016)6093-6100.
[25] X.Y. Lai, J.E. Halpert, D. Wang, Energy Environ. Sci. 5(2012) 5604-5618.
[26] Z.Y. Luo, Y.H. Zhu, E.H. Liu, T.T. Hu, Z.P. Li, T.T. Liu, L.C. Song, Mater. Res. Bull.60(2014) 105-110.
[27] G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196 (2011) 1-12.
[28] L.M. Li, Y. Zhou, Z.Q. Li, Y.J. Ma, C.H. Pei, Mater. Res. Bull. 60(2014) 802-807.
[29] Z.F. Li, H.Y. Zhang, Q. Liu, L.L. Sun, L. Stanciu, J. Xie, ACS Appl. Mater. Interfaces5(2013) 2685-2691.
[30] Y.X. Xu, Y.Z. Lin, X.Q. Huang, Y. Wang, Y. Huang, X.F. Duan, Adv. Mater. 25(2013) 5779-5784.
[31] Z.Y. Zhang, F. Xiao, L.H. Qian, J.W. Xiao, S. Wang, Y.Q. Liu, Adv. Energy Mater. 4(2014) 1400064.
[32] Z.Y. Zhang, F. Xiao, S. Wang, J. Mater. Chem. A 3 (2015) 11215-11223.
[33] Z.Y. Zhang, F. Xiao, J. Xiao, S. Wang, J. Mater. Chem. A 3 (2015) 11817-11823.
[34] Z.Y. Zhang, K. Chi, F. Xiao, S. Wang, J. Mater. Chem. A 3 (2015) 12828-12835.
[35] Z.Y. Zhang, S.S. Liu, J. Xiao, S. Wang, J. Mater. Chem. A 4 (2016) 9691-9699.
[36] Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 4 (2010) 1963-1970.
[37] K. Zhang, L.L. Zhang, X.S. Zhao, J.S. Wu, Chem. Mater. 22(2010) 1392-1401.
[38] E. Mitchell, J. Candler, F.D. Souza, R.K. Gupta, B.K. Gupta, L.F. Dong, Synth. Met.199(2015) 214-218.
[39] X. Li, C.F. Zhang, S. Xin, Z.C. Yang, Y.T. Li, D.W. Zhang, P. Yao, ACS Appl. Mater.Interfaces 8 (2016) 21373-21380.
[40] H.H. Zhou, G.Y. Han, Electrochim. Acta 192 (2016) 448-455.
[41] H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Energy Environ. Sci. 6(2013) 1185-1191.
[42] X.M. Feng, R.M. Li, Y.W. Ma, R.F. Chen, N.E. Shi, Q.L. Fan, W. Huang, Adv. Funct.Mater. 21(2011) 2989-2996.
[43] Z.B. Lei, Z.W. Chen, X.S. Zhao, J. Phys. Chem. C 114 (2010) 19867-19874.
[44] J. Luo, Q. Ma, H.H. Gu, Y. Zheng, X.Y. Liu, Electrochim. Acta 173 (2015)184-192.
[45] J. Wang, Z.C. Wu, K.H. Hu, X.Y. Chen, H.B. Yin, J. Alloy. Compd. 619(2015)38-43.
[46] J.P. Mensing, A. Wisitsoraat, D. Phokharatkul, T. Lomas, A. Tuantranont,Composites Part B 77 (2015) 93-99.
[47] V. Gedela, S.K. Puttapati, C. Nagavolu, V.V.S.S. Srikanth, Mater. Lett. 152(2015)177-180.
[48] H. Chen, S.X. Zhou, L.M. Wu, ACS Appl. Mater. Interfaces 6 (2014)8621-8630.
[49] X.X. Wang, H. Wang, T. Ge, T. Yang, S.Z. Luo, K. Jiao, J. Phys. Chem. C 119(2015) 9076-9084.
[50] J.C. Chen, Y.Q. Liu, W.J. Li, C. Wu, L.Q. Xu, H. Yang, J. Mater.Sci. 50(2015)5466-5474.
[51] J. Ma, S.C. Tang, J.A. Syed, X.K. Meng, RSC Adv. 6(2016) 82995-83002.
[52] T. Lindfors, R.M. Latonen, Carbon 69 (2014) 122-131.
[53] X. Wang, K.Z. Gao, Z.Q. Shao, X.Q. Peng, X. Wu, F.J. Wang, J. Power Sources 249(2014) 148-155.
[54] T. Lindfors, R.M. Latonen, Carbon 69 (2014) 122-131.
No related articles found!
[1] Shouliang BU, Shaoqing WANG, Hengqiang YE. Synchronizing the Parameter Non-matching Chaotic Systems[J]. J Mater Sci Technol, 2002, 18(02): 191 -192 .
[2] Mingwei LI, Jingchuan ZHU, Zhongda YIN, Gang ZENG. Analysis of Equivalent Oxygen Diffusivity of Particle Dispersed Composites[J]. J Mater Sci Technol, 2002, 18(05): 416 -418 .
[3] G.C.Hwang, J.Matsushita. Fabrication and Properties of SiB6-B4C with Phenolic Resin as a Carbon Source[J]. J Mater Sci Technol, 2008, 24(01): 102 -104 .
[4] TANG Rongde Deputy-chief engineer. Fushun Steel Plant, Liaoning, China.. Fushun Steel Plant[J]. J Mater Sci Technol, 1989, 5(5): 373 -375 .
[5] S.K. Ghosh. Influence of Cold Deformation on the Aging Behaviour of Al-Cu-Si-Mg Alloy[J]. J Mater Sci Technol, 2011, 27(3): 193 -198 .
[6] Hyunsik Bang, Ke Ma, Kai Wei, Chang-Yong Kang, Byoung-Suhk Kim, Mayakrishnan Gopiraman, Jung Soon Lee, Ick-Soo Kim. A Simple Method for the Fabrication of Metallic Copper Nanospheres-Decorated Cellulose Nanofiber Composite[J]. J. Mater. Sci. Technol., 2016, 32(7): 605 -610 .
[7] Lei Li, Peng Guo, Lin-Lin Liu, Xiaowei Li, Peiling Ke, Aiying Wang. Structural design of Cr/GLC films for high tribological performance in artificial seawater: Cr/GLC ratio and multilayer structure[J]. J. Mater. Sci. Technol., 2018, 34(8): 1273 -1280 .
[8] Y.Z. Tian, S.J. Sun, H.R. Lin, Z.F. Zhang. Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation[J]. J. Mater. Sci. Technol., 2019, 35(3): 334 -340 .
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.