材料科学与技术 ›› 2020, Vol. 48 ›› Issue (0): 114-122.DOI: 10.1016/j.jmst.2020.03.005
收稿日期:2019-12-20
									
				
									
				
											接受日期:2020-01-28
									
				
											出版日期:2020-07-01
									
				
											发布日期:2020-07-13
									
			
        
               		Bo Yanga, Xianghe Penga,b,*( ), Yinbo Zhaoa, Deqiang Yina, Tao Fua, Cheng Huangc,**(
), Yinbo Zhaoa, Deqiang Yina, Tao Fua, Cheng Huangc,**( )
)
			  
			
			
			
                
        
    
Received:2019-12-20
									
				
									
				
											Accepted:2020-01-28
									
				
											Online:2020-07-01
									
				
											Published:2020-07-13
									
			Contact:
					Xianghe Peng,Cheng Huang   
							. [J]. 材料科学与技术, 2020, 48(0): 114-122.
Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114-122.
| Systems | Geometric parameters (?) | Elastic parameters (GPa) | |||||
|---|---|---|---|---|---|---|---|
| B0 | E100 | E110 | E111 | G100 | G111-110 | ||
| Diamond | a = b = c = 3.575 | 434 | 1026 | 1128 | 1166 | 555 | 491 | 
| cBN | a = b = c = 3.625 | 376 | 948 | 952 | 873 | 444 | 341 | 
| B0 | Ep | Ev | |||||
| Lonsdaleite | a = b = 2.514, c = 4.184 | 483 | 1285 | 1173 | |||
| wBN | a = b = 2.554, c = 4.225 | 374 | 1009 | 909 | |||
Table 1 Geometric parameters and elastic parameters of diamond, lonsdaleite, cBN and wBN.
| Systems | Geometric parameters (?) | Elastic parameters (GPa) | |||||
|---|---|---|---|---|---|---|---|
| B0 | E100 | E110 | E111 | G100 | G111-110 | ||
| Diamond | a = b = c = 3.575 | 434 | 1026 | 1128 | 1166 | 555 | 491 | 
| cBN | a = b = c = 3.625 | 376 | 948 | 952 | 873 | 444 | 341 | 
| B0 | Ep | Ev | |||||
| Lonsdaleite | a = b = 2.514, c = 4.184 | 483 | 1285 | 1173 | |||
| wBN | a = b = 2.554, c = 4.225 | 374 | 1009 | 909 | |||
 
																																											Fig. 2. Schematic diagrams of polycrystalline sample of diamond and lonsdaleite mixture. (a-d) diamond/lonsdaleite biphases with four different stacking sequences, with white regions and yellow regions denoting diamond and lonsdaleite (Lon) regions, respectively; (e) <011 > STEM image from Canyon Diablo sample; one of {111} stacking faults, indicated by dotted white line; (f) Structure model of the region marked with white corners in (g) (Reproduced from Ref. [13]); (g) and (h) high angle HAADF-STEM image and annular bright-field STEM image of atomic structure of cBN/wBN biphases (reproduced from Ref. [24]).
 
																																											Fig. 3. (a) and (b) Snapshots from ab initio MD simulations, with structural changes in diamond/lonsdaleite biphases at T = 1200 K; (c-f) Snapshots of 4L + D, (3 + 1)L + D, (2 + 1 + 1)L + D, and (1 + 1+1 + 1)L + D diamond/lonsdaleite biphases at T = 1200 K.
 
																																											Fig. 4. (a) Comparison between σ-ε curves of diamond/lonsdaleite biphases and those of diamond sheared along ESD and along HSD under pure shear; (b) comparison between σ-ε curve of cBN/wBN biphases and those of cBN sheared along ESD and along HSD under pure shear; (c)-(g) key structural snapshots of 4L + D at ε0 = 0, ε1 = 0.24, ε2 = 0.25, ε3 = 0.40, and ε4 = 0.41, respectively, with yellow regions denoting lonsdaleite (Lon) regions and b denoting Burgers vector a0/6 [112ˉ].
 
																																											Fig. 5. (a) Calculated GSFE curves along (111)<112> slip system, with γUg and γUs denoting respectively energy barrier on glide-set and shuffle-set planes, and γIg stable GSFE on glide-set plane. (b), (c) and (d) atomic configurations in three key structures in (111)<112> slip system: (b) initial biphasic configuration, (c) unstable configuration, and (d) stable cubic configuration.
 
																																											Fig. 6. σ-ε and E-ε curves under pure shear. (a) 4L + D; (b) (3 + 1)L + D; (c) (2 + 1 + 1)L + D; (d) (1 + 1+1 + 1)L + D; (e) 4w + c;(f) (3 + 1)w + c; (g) (2 + 1 + 1)w + c; (h) (1 + 1+1 + 1)w + c.
 
																																											Fig. 7. (a) Comparison between σ-ε curve of diamond/lonsdaleite biphases and those of diamond sheared along ESD and along HSD under σzz = 200 GPa; (b) comparison between σ-ε curve of cBN/wBN biphases and those of cBN sheared along ESD and along HSD under σzz = 200 GPa; (c)-(g) structural snapshots of (3 + 1)L + D at ε0 = 0, ε1 = 0.22, ε2 = 0.23, ε3 = 0.30, and ε4 = 0.31, respectively, with yellow regions denoting lonsdaleite (Lon) regions and b denoting Burgers vector a0/6 [112ˉ].
 
																																											Fig. 8. (a) Comparison between σ-ε curve of diamond/lonsdaleite biphases and those of diamond sheared along ESD and along HSD under σzz=σzxtan68; (b) comparison between σ-ε curve of cBN/wBN biphases and those of cBN sheared along ESD and along HSD under σzz=σzxtan68° ; (c-g) structural snapshots of 4L + D at ε0 = 0, ε1 = 0.21, ε2 = 0.22, and ε3 = 0.42, respectively, with yellow regions denoting lonsdaleite (Lon) regions and b denoting Burgers vector a0/6 [112ˉ].
| Systems | σzz =0 GPa | σzz = σzx tan68° GPa | σzx = 200 GPa | 
|---|---|---|---|
| Diamond-easy | 89.9 | 95.5 | 100.0 | 
| Diamond-hard | 134..3 | 145.9 | 200.7 | 
| Lonsdaleite | 106.9 | 160.1 | 200.2 | 
| 4L + D | 130.0 | 141.8 | 200.0 | 
Table 2 Comparison of peak shear stress component (σzx) under uniaxial and biaxial stress states.
| Systems | σzz =0 GPa | σzz = σzx tan68° GPa | σzx = 200 GPa | 
|---|---|---|---|
| Diamond-easy | 89.9 | 95.5 | 100.0 | 
| Diamond-hard | 134..3 | 145.9 | 200.7 | 
| Lonsdaleite | 106.9 | 160.1 | 200.2 | 
| 4L + D | 130.0 | 141.8 | 200.0 | 
| [1] | C. Huang, X. Peng, T. Fu, Y. Zhao, C. Feng, Z. Lin, Q. Li, Appl. Surf. Sci. 392 (2017) 215-224. DOI URL | 
| [2] | Q. Huang, D.L. Yu, B. Xu, W.T. Hu, Y.M. Ma, Y.B. Wang, Z.S. Zhao, B. Wen, J.L. He, Z.Y. Liu, Y.J. Tian, Nature 510 ( 2014) 250. URL PMID | 
| [3] | B. Yang, X. Peng, C. Huang, D. Yin, H. Xiang, T. Fu, ACS Appl. Mater. Interfaces 10 ( 2018) 42804-42811. DOI URL PMID | 
| [4] | C. Huang, X. Peng, B. Yang, H. Xiang, S. Sun, X. Chen, Q. Li, D. Yin, T. Fu, Carbon 132 ( 2018) 606-615. | 
| [5] | C. Huang, X. Peng, B. Yang, X. Chen, Q. Li, D. Yin, T. Fu, Carbon 136 ( 2018) 320-328. | 
| [6] | C. Chen, Z. Wang, T. Kato, N. Shibata, T. Taniguchi, Y. Ikuhara, Nat. Commun. 6 (2015) 6327. URL PMID | 
| [7] | B. Yang, X. Peng, S. Sun, C. Huang, D. Yin, X. Chen, T. Fu, Nanomaterials 9 (8) ( 2019) 1117. | 
| [8] | B. Yang, X. Peng, C. Huang, Y. Zhao, X. Chen, G. Zhang, T. Fu, J. Alloys Compd. 805 (2019) 1090-1095. | 
| [9] | B. Yang, X. Peng, C. Huang, Z. Wang, D. Yin, T. Fu, Carbon 150 ( 2019) 1-7. | 
| [10] | C. Frondel, U.B. Marvin, Nature 214 ( 1967) 587-589. | 
| [11] | A.G. Kvashnin, P.B. Sorokin, J. Phys. Chem. Lett. 5 (2014) 541-548. DOI URL PMID | 
| [12] | L. Qingkun, S. Yi, L. Zhiyuan, Z. Yu, Scr. Mater. 65 (2011) 229-232. | 
| [13] | P. Nemeth, L.A. Garvie, T. Aoki, N. Dubrovinskaia, L. Dubrovinsky, P.R. Buseck, Nat. Commun. 5 (2014) 6447. | 
| [14] | K. Tanigaki, H. Ogi, H. Sumiya, K. Kusakabe, N. Nakamura, M. Hirao, H. Ledbetter, Nat. Commun. 4 (2013) 2343. URL PMID | 
| [15] | R.S. Clarke, D.E. Appleman, D.R. Ross, Nature 291 ( 5814) ( 1981) 396-398. | 
| [16] | Z. Pan, H. Sun, Y. Zhang, C. Chen, Phys. Rev. Lett. 102 (2009), 055503. | 
| [17] | Y. Tian, H. Liu, B.W. Sheldon, T.J. Webster, S. Yang, H. Yang, L. Yang, J. Mater. Sci. Technol. 35 (2019) 817-823. | 
| [18] | S. Liu, L. Han, Y. Zou, P. Zhu, B. Liu, J. Mater. Sci. Technol. 33 (2017) 1386-1391. | 
| [19] | Q. Tao, J. Wang, L. Fu, Z. Chen, C. Shen, D. Zhang, Z. Sun, J. Mater. Sci. Technol. 33 (2017) 1210-1218. | 
| [20] | V.N. Denisov, B.N. Mavrin, N.R. Serebryanaya, G.A. Dubitsky, V.V. Aksenenkov, A.N. Kirichenko, N.V. Kuzmin, B.A. Kulnitskiy, I.A. Perezhogin, V.D. Blank, Diam. Relat. Mater. 20 (2011) 951-953. | 
| [21] | Christoph G. Salzmann, Benjamin J. Murray, Jacob J. Shephard, Diam. Relat. Mater. 59 (2015) 69-72. | 
| [22] | M. Murri, R.L. Smith, K. McColl, M. Hart, M. Alvaro, A.P. Jones, P. Németh, C.G. Salzmann, F. Corà, M.C. Domeneghetti, F. Nestola, N.V. Sobolev, S.A. Vishnevsky, A.M. Logvinova, P.F. McMillan, Sci. Rep. 9 (2019) 10334. URL PMID | 
| [23] | W. Baek, S.A. Gromilov, A.V. Kuklin, E.A. Kovaleva, A.S. Fedorov, A.S. Sukhikh, M. Hanfland, V.A. Pomogaev, I.A. Melchakova, P.V. Avramov, K.V. Yusenko, Nano Lett. 19 (2019) 1570-1576. DOI URL PMID | 
| [24] | C. Chen, D. Yin, T. Kato, T. Taniguchi, K. Watanabe, X. Ma, H. Ye, Y. Ikuhara, Proc Natl. Acad. Sci. U. S. A. 116 (2019) 11181-11186. URL PMID | 
| [25] | G. Kresse, J. Furthmuller, Phys. Rev. B 54 ( 1996) 11169-11186. | 
| [26] | G. Kresse, D. Joubert, Phys. Rev. B 59 ( 1999) 1758-1775. | 
| [27] | J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868. | 
| [28] | H.J. McSkimin, P. Andreatch, J. Appl. Phys. 43 (1972) 2944-2948. | 
| [29] | H. Yao, L. Ouyang, W.-Y. Ching, J. Am. Ceram. Soc. 90 (2007) 3194-3204. | 
| [30] | L. Sun, X. He, J. Lu, NPJ Comput. Mater. 4 (2018) 6. | 
| [31] | G. Wu, K.C. Chan, L. Zhu, L. Sun, J. Lu, Nature 545 ( 2017) 80-83. | 
| [32] | X. Zhou, X.Y. Li, K. Lu, Science 360 ( 2018) 526-530. DOI URL | 
| [33] | D. Yin, C. Chen, Nat. Mater. 18 (2019) 19-23. DOI URL PMID | 
| [34] | Z. Wang, M. Saito, K.P. McKenna, L. Gu, S. Tsukimoto, A.L. Shluger, Y. Ikuhara, Nature 479 ( 2011) 380-383. URL PMID | 
| [35] | Z. Wang, L. Gu, M. Saito, S. Tsukimoto, M. Tsukada, F. Lichtenberg, Y. Ikuhara, J. Georg, Adv. Mater. 25 (2) ( 2013) 218-222. URL PMID | 
| [36] | A. Banerjee, D. Bernoulli, H.T. Zhang, M.F. Yuen, J.B. Liu, J.C. Dong, F. Ding, J. Lu, M. Dao, W.J. Zhang, Y. Lu, S. Suresh, Science 360 ( 2018) 300-302. URL PMID | 
| [37] | A. Nie, Y. Bu, P. Li, Y. Zhang, T. Jin, J. Liu, Z. Su, Y. Wang, J. He, Z. Liu, H. Wang, Y. Tian, W. Yang, Nat. Commun. 10 (2019) 5533. DOI URL | 
| [38] | B. Li, H. Sun, C. Chen, Phys. Rev. Lett. 117 (2016), 116103. URL PMID | 
| [39] | D.R. Kripalani, A.A. Kistanov, Y. Cai, M. Xue, K. Zhou, Phys. Rev. B 98 ( 2018), 085410. | 
| [40] | D. Rodney, M. Fivel, R. Dendievel, Phys. Rev. Lett. 95 (2005), 108004. URL PMID | 
| [41] | K.K. Chawla, M.A. Meyers, Mechanical Behavior of Materials, Cambridge University Press, New York, 2009, pp. 95-104. | 
| [42] | Y. Zhao, X. Peng, T. Fu, C. Huang, H. Xiang, N. Hu, C. Yan, Materialia 2 ( 2018) 148-156. | 
| [43] | R.F. Zhang, S. Veprek, A.S. Argon, Phys. Rev. B 77 ( 2008), 172103. | 
| [44] | Y. Zhang, H. Sun, C. Chen, Phys. Rev. B 73 ( 2006), 144115. | 
| [45] | Y. Zhang, H. Sun, C. Chen, Phys. Rev. Lett. 94 (2005), 145505. URL PMID | 
| [46] | D. Rodney, L. Ventelon, E. Clouet, L. Pizzagalli, F. Willaime, Acta Mater. 124 (2017) 633-659. | 
| [47] | H. Xiang, H. Li, T. Fu, C. Huang, X. Peng, Acta Mater. 138 (2017) 131-139. | 
| [48] | B. Xu, L. Capolungo, D. Rodney, Scr. Mater. 68 (2013) 901-904. | 
| [49] | D. Kraus, A. Ravasio, M. Gauthier, D.O. Gericke, J. Vorberger, S. Frydrych, J. Helfrich, L.B. Fletcher, G. Schaumann, B. Nagler, B. Barbrel, B. Bachmann, E.J. Gamboa, S. Gode, E. Granados, G. Gregori, H.J. Lee, P. Neumayer, W. Schumaker, T. Doppner, R.W. Falcone, S.H. Glenzer, M. Roth, Nat. Commun. 7 (2016) 10970. URL PMID | 
| [50] | N. Dubrovinskaia, V.L. Solozhenko, N. Miyajima, V. Dmitriev, O.O. Kurakevych, L. Dubrovinsky, Appl. Phys. Lett. 90 (2007), 101912. DOI URL | 
| [51] | C. Lu, Q. Li, Y. Ma, C. Chen, Phys. Rev. Lett. 119 (2017), 115503. URL PMID | 
| No related articles found! | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||