材料科学与技术 ›› 2020, Vol. 48 ›› Issue (0): 105-113.DOI: 10.1016/j.jmst.2020.03.013
收稿日期:2019-11-12
接受日期:2020-01-29
出版日期:2020-07-01
发布日期:2020-07-13
Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul*(
)
Received:2019-11-12
Accepted:2020-01-29
Online:2020-07-01
Published:2020-07-13
Contact:
Paveena Laokul
. [J]. 材料科学与技术, 2020, 48(0): 105-113.
Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105-113.
Fig. 1. SEM images and the corresponding size distribution histograms of carbon spheres prepared using dextrose solutions at various pH values (a) pH 3, (b) pH 7 and (b) pH 10.
Fig. 4. FESEM micrographs (left) and corresponding higher magnification images (right) of the prepared TiO2 hollow spheres (a) THs-pH3, (b) THs-pH7 and (c) THs-pH10.
Fig. 7. N2 adsorption-desorption isotherms and the corresponding pore size distribution curves (inset) of the THs samples compared to TiO2 nanoparticles.
| Sample | Diameter (nm) | Shell thickness (nm) | Surface area (m2/g) | Pore volume (cm3/g) | Absorption edge (nm) | Eg (eV) | Rate constant (min-1) | Degradation (%) |
|---|---|---|---|---|---|---|---|---|
| TNPs | n/a | n/a | 4.27 | 0.03 | 402 | 2.98 | 1.38 × 10-3 | 21.81 |
| THs-pH3 | 667.98 ± 22.27 | 46.98 ± 8.30 | 138.07 | 0.89 | 409 | 2.88 | 5.21 × 10-3 | 62.22 |
| THs-pH7 | 327.03 ± 22.12 | 28.36 ± 6.63 | 101.98 | 0.58 | 394 | 3.12 | 10.43 × 10-3 | 89.76 |
| THs-pH10 | 170.91 ± 37.86 | 32.62 ± 6.00 | 54.53 | 0.47 | 397 | 3.05 | 8.34 × 10-3 | 76.10 |
Table 1 Summary of diameter and shell thickness, specific surface area, pore-volume, optical absorption edge, band gap energy (Eg), rate constant and degradation efficiency of as-prepared samples.
| Sample | Diameter (nm) | Shell thickness (nm) | Surface area (m2/g) | Pore volume (cm3/g) | Absorption edge (nm) | Eg (eV) | Rate constant (min-1) | Degradation (%) |
|---|---|---|---|---|---|---|---|---|
| TNPs | n/a | n/a | 4.27 | 0.03 | 402 | 2.98 | 1.38 × 10-3 | 21.81 |
| THs-pH3 | 667.98 ± 22.27 | 46.98 ± 8.30 | 138.07 | 0.89 | 409 | 2.88 | 5.21 × 10-3 | 62.22 |
| THs-pH7 | 327.03 ± 22.12 | 28.36 ± 6.63 | 101.98 | 0.58 | 394 | 3.12 | 10.43 × 10-3 | 89.76 |
| THs-pH10 | 170.91 ± 37.86 | 32.62 ± 6.00 | 54.53 | 0.47 | 397 | 3.05 | 8.34 × 10-3 | 76.10 |
Fig. 8. UV-vis absorption spectra of TNPs and THs samples. The inset contains plots of (αhν)1/2 versus photon energy (hν) of the THs samples compared to TiO2 nanoparticles.
Fig. 11. (a) Photocatalytic degradation of MO, (b) the degradation rate of all samples, (c) absorbance of MO dye by the THs and TiO2 nanoparticles after 140 min of photocatalytic degradation and (d) variations of ln(C0/C) as a function of irradiation time.
| [1] |
D. Sun, H. Bai, Z. Liu, Appl. Catal. B 104 ( 2011) 234-238.
DOI URL |
| [2] | C.K. Ngaw, Q. Xu, T.T.Y. Tan, P. Hu, S. Cao, J.S.C. Loo, Chem. Eng. J. 257 (2014) 112-121. |
| [3] | J.V. Hernandez, S. Coste, A.G. Murillo, F.C. Romo, A. Kassiba, J. Alloys. Compd. 710 (2017) 355-363. |
| [4] | B. Reti, G.I. Kiss, T. Gyulavari, K. Baan, K. Magyari, K. Hernadi, Catal Today 284 ( 2017) 160-168. |
| [5] | M.A. Henderson, Surf. Sci. Rep. 66 (2011) 185-297. |
| [6] | P. Salvador, J. Phys. Chem. C 111 ( 2007) 17038-17043. |
| [7] | H. Yang, K. Zhang, R. Shi, X. Li, X. Dong, Y. Yu, J. Alloys. Compd. 413 (2006) 302-306. |
| [8] | Q.E. Zhao, W. Wen, Y. Xia, J.M. Wu, Thin Solid Films 648 ( 2018) 103-107. |
| [9] | Y. Ye, Y. Feng, H. Bruning, D. Yntema, H.H.M. Rijnaarts, Appl. Catal. B-Environ. 220 (2018) 171-181. |
| [10] |
W.S. Wang, D.H. Wang, W.G. Qu, L.Q. Lu, A.W. Xu, J. Phys. Chem. C 116 ( 2012) 19893-19901.
DOI URL |
| [11] | Y. Li, et al., Appl. Catal. B-Environ. 246 (2019) 12-20. |
| [12] | Y. Li, X. Deng, J. Tian, Z. Liang, H. Cui, Appl. Mater. Today 13 ( 2018) 217-227. |
| [13] |
C.J. Lin, W.T. Yang, C.Y. Chou, S.Y.H. Liou, Chemosphere 152 ( 2016) 490-495.
URL PMID |
| [14] | H.L. Shen, H.H. Hu, D.Y. Liang, H.L. Meng, P.G. Li, W.H. Tang, C. Cui, J. Alloy. Comp. 542 (2012) 32-36. |
| [15] |
L. Chang, J. Wang, M. Zhu, W. Zhang, J. Liu, Mater. Sci. Eng. B 172 ( 2010) 142-145.
DOI URL |
| [16] | Z.Z. Yang, Z.W. Niu, Y.F. Lu, Z.B. Hu, C.C. Han, Angew. Chem. Int. Ed. 42 (2003) 1943-1945. |
| [17] | C. Wang, Y. Ao, P. Wang, J. Hou, J. Qian, Appl. Surf. Sci. 57 (2010) 227-231. |
| [18] | N. Nasralla, M. Yeganeh, Y. Astuti, S. Piticharoenphun, N. Shahtahmasebi, A. Kompany, M. Karimipour, B.G. Mendis, N.R.J. Poolton, L. Siller, Sci. Iran. F 20 ( 2013) 1018-1022. |
| [19] | S. Liu, X. Wang, H. Zhao, W. Cai, Colloids Surf. A Physicochem. Eng. Asp. 484 (2015) 386-393. |
| [20] | S. Kang, D. Yin, X. Li, L. Li, J. Mu, Mater. Res. Bull. 47 (2012) 3065-3069. |
| [21] |
J. Wang, Y. Bai, M. Wu, J. Yin, W.F. Zhang, J. Power. Sources 191 ( 2009) 614-618.
DOI URL |
| [22] | P. Pradubkorn, S. Maensiri, E. Swatsitang, P. Laokul, Curr. Appl. Phys. 20 (2020) 178-185. |
| [23] | H. Yin, X. Wang, L. Wang, Q. Nie, Y. Zhang, Q. Yuan, W. Wu, J. Alloy. Comp. 657 (2016) 44-52. |
| [24] | J. Li, H. Cui, X. Song, N. Wei, J. Tian, Appl. Surf. Sci. 396 (2017) 1539-1549. |
| [25] | M. Sevilla, A.B. Fuertes, Chem. A Eur. J. 15 (16) ( 2009) 4195-4203. |
| [26] | X. Sun, Y. Li, Angew. Chem. Int. Ed. 43 (5) ( 2004) 597-601. |
| [27] |
M. Li, Q. Wu, M. Wen, J. Shi, Nanoscale Res. Lett. 4 (11) ( 2009) 1365-1370.
DOI URL PMID |
| [28] |
S. Sood, A. Umar, S.K. Mehta, S.K. Kansal, J. Colloid Interface Sci. 450 (2015) 213-223.
DOI URL PMID |
| [29] | R. Liu, F. Ren, W.Su.P. He, C. Shen, L. Zhang, C. Wang, Ceram. Int. 450 (2015) 14615-14620. |
| [30] | J.W. Shi, J.W. Chen, H.J. Cui, M.L. Fu, H.Y. Luo, B. Ye, Z.L. Ye, Chem. Eng. J. 195-196 (2012) 226-232. |
| [31] | M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. Sing, Pure Appl. Chem. 87 (2015) 1051-1069. |
| [32] |
C. Moreno-Castilla, H. García-Rosero, F. Carrasco-Marín, Colloids Surf. A Physicochem. Eng. Asp. 520 (2017) 488-496.
DOI URL |
| [33] |
C. Wang, J. Wu, P. Wang, Y. Ao, J. Hou, J. Qian, Actuators B 181 ( 2013) 1-8.
DOI URL |
| [34] |
Q. Mei, F. Zhang, Ng Wang, Y. Yang, R. Wu, W. Wang, RSC Adv. 9 (2019) 22764.
DOI URL |
| [35] |
D.K. Pallotti, L. Passoni, P. Maddalena, F.D. Fonzo, S. Lettieri, J. Phys. Chem. C 121 ( 2017) 9011-9021.
DOI URL |
| [36] |
W.J. Ong, S.Y. Voon, L.L. Tan, B.T. Goh, S.T. Yong, S.P. Chai, J. Ind. Eng. Chem. Res. 53 (2014) 17333-17334.
DOI URL |
| [37] |
J. Jia, D. Li, J. Wan, X. Yu, J. Ind. Eng. Chem. 33 (2016) 162-169.
DOI URL |
| [38] |
L. Zhang, M.S. Tse, O.K. Tan, Y.X. Wang, M. Han, J. Mater. Chem. A 1 ( 2013) 4497-4507.
DOI URL |
| [39] |
Y. Su, Nanotechnology 24 ( 2013), 295401.
URL PMID |
| [40] |
Z. Liu, D.D. Sun, P. Guo, J.O. Leckie, Chem. Eur. J. 13 (2007) 1851-1855.
URL PMID |
| [41] |
R. Wang, X. Cai, F. Shen, Ceram. Int. 39 (2013) 9465-9470.
DOI URL |
| [42] |
X. Lin, D. Fu, L. Hao, Z. Ding, J. Environ. Sci. 25 (10) ( 2013) 2150-2156.
DOI URL |
| [43] |
Z.Y. Liu, H.W. Bai, D.R. Sun, Appl. Catal. B-Environ. 104 (2011) 234-238.
DOI URL |
| [44] |
L. Liu, H. Liu, Y. Zhao, Y. Wang, Y. Duan, G. Gao, M. Ge, W. Chen, Environ. Sci. Technol. 42 (2008) 2342-2348.
DOI URL PMID |
| [45] |
H.L. Shena, H.H. Hub, D.Y. Lianga, H.L. Menga, P.G. Lia, W.H. Tanga, C. Cui, J. Alloys. Compd. 542 (2012) 32-36.
DOI URL |
| No related articles found! |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||