材料科学与技术 ›› 2020, Vol. 48 ›› Issue (0): 72-83.DOI: 10.1016/j.jmst.2020.01.055
收稿日期:2019-12-06
接受日期:2020-01-31
出版日期:2020-07-01
发布日期:2020-07-13
Enze Zhoua,b, Jianjun Wangb,a, Masoumeh Moradia,b, Huabing Lia,*(
), Dake Xua,b,**(
), Yuntian Louc, Jinheng Luod, Lifeng Lid, Yulei Wange, Zhenguo Yangf, Fuhui Wanga,b, Jessica A. Smithg
Received:2019-12-06
Accepted:2020-01-31
Online:2020-07-01
Published:2020-07-13
Contact:
Huabing Li,Dake Xu
. [J]. 材料科学与技术, 2020, 48(0): 72-83.
Enze Zhou, Jianjun Wang, Masoumeh Moradi, Huabing Li, Dake Xu, Yuntian Lou, Jinheng Luo, Lifeng Li, Yulei Wang, Zhenguo Yang, Fuhui Wang, Jessica A. Smith. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing[J]. J. Mater. Sci. Technol., 2020, 48(0): 72-83.
| Composition | Groundwater (GW) | Lake water (LW) | |
|---|---|---|---|
| Nitrate | mg/L | 0.030 | 0.036 |
| Fluoride | mg/L | 0.347 | 0.437 |
| Sulfate | mg/L | 44.4 | 236 |
| Chloride | mg/L | 84.0 | 0.09 |
| Phosphate | mg/L | 1.19 | 0.899 |
| Cadmium (Cd) | μg/L | <0.05 | 5.2 |
| Iron (Fe) | μg/L | 12.2 | 4.4 × 104 |
| Manganese (Mn) | μg/L | 2.3 | 95.6 |
| Lead (Pb) | μg/L | 1.1 | <0.09 |
| Copper (Cu) | μg/L | 2.2 | 1.65 |
| Zinc (Zn) | μg/L | 1.6 | 0.93 |
| Molybdenum (Mo) | μg/L | 0.436 | 65.3 |
| Aluminum (Al) | μg/L | 36.1 | 3.42 |
Table 1 Chemical composition of groundwater (GW) and untreated lake water (LW) used in this study.
| Composition | Groundwater (GW) | Lake water (LW) | |
|---|---|---|---|
| Nitrate | mg/L | 0.030 | 0.036 |
| Fluoride | mg/L | 0.347 | 0.437 |
| Sulfate | mg/L | 44.4 | 236 |
| Chloride | mg/L | 84.0 | 0.09 |
| Phosphate | mg/L | 1.19 | 0.899 |
| Cadmium (Cd) | μg/L | <0.05 | 5.2 |
| Iron (Fe) | μg/L | 12.2 | 4.4 × 104 |
| Manganese (Mn) | μg/L | 2.3 | 95.6 |
| Lead (Pb) | μg/L | 1.1 | <0.09 |
| Copper (Cu) | μg/L | 2.2 | 1.65 |
| Zinc (Zn) | μg/L | 1.6 | 0.93 |
| Molybdenum (Mo) | μg/L | 0.436 | 65.3 |
| Aluminum (Al) | μg/L | 36.1 | 3.42 |
Fig. 2. FESEM images of X52 steel surfaces after (a) exposing to LW for 14 days, (b) exposing to LW for 30 days, (c) exposing to GW for 14 days, (d) exposing to GW for 30 days, (e) removal of the biofilm from coupons exposed to LW for 14 days, and (f) removal of the biofilm from coupons exposed to LW for 30 days.
| C | N | O | P | S | Na | Cl | Cr | Mn | Fe | |
|---|---|---|---|---|---|---|---|---|---|---|
| LW-14 days | 18.34 | 3.10 | 35.93 | 8.83 | 2.47 | 4.43 | — | — | 0.22 | 26.68 |
| LW-30 days | 33.43 | 5.66 | 27.74 | 1.62 | 7.32 | 1.18 | — | — | 0.18 | 22.87 |
| GW-14 days | 11.09 | 0.02 | 9.60 | 0.04 | 0.01 | — | 0.48 | 0.01 | 1.13 | 77.61 |
| GW-30 days | 7.69 | 0.03 | 5.11 | 0.30 | — | — | — | 0.30 | 1.00 | 85.56 |
| LW washed- 14 days | 5.75 | — | 1.92 | — | — | — | — | — | 1.26 | 91.07 |
| LW washed- 30 days | 4.41 | — | 2.66 | — | — | — | — | — | — | 92.93 |
Table 2 EDS analysis (wt.%) of exposed surfaces of the X52 steel coupons after exposure to LW or GW after 14 or 30 days.
| C | N | O | P | S | Na | Cl | Cr | Mn | Fe | |
|---|---|---|---|---|---|---|---|---|---|---|
| LW-14 days | 18.34 | 3.10 | 35.93 | 8.83 | 2.47 | 4.43 | — | — | 0.22 | 26.68 |
| LW-30 days | 33.43 | 5.66 | 27.74 | 1.62 | 7.32 | 1.18 | — | — | 0.18 | 22.87 |
| GW-14 days | 11.09 | 0.02 | 9.60 | 0.04 | 0.01 | — | 0.48 | 0.01 | 1.13 | 77.61 |
| GW-30 days | 7.69 | 0.03 | 5.11 | 0.30 | — | — | — | 0.30 | 1.00 | 85.56 |
| LW washed- 14 days | 5.75 | — | 1.92 | — | — | — | — | — | 1.26 | 91.07 |
| LW washed- 30 days | 4.41 | — | 2.66 | — | — | — | — | — | — | 92.93 |
| Elements | Fe | Cr | P | Cl | S | N | O | C |
|---|---|---|---|---|---|---|---|---|
| 14 days | ||||||||
| LW | 23.57 | — | 1.17 | 0.70 | 0.93 | 2.25 | 42.72 | 28.66 |
| GW | 27.10 | 0.88 | — | — | — | — | 51.60 | 20.42 |
| 30 days | ||||||||
| LW | 11.21 | — | 1.72 | — | 9.92 | 7.85 | 10.36 | 58.94 |
| GW | 14.17 | — | — | — | — | 10.22 | 36.45 | 39.16 |
Table 3 Element atomic percentages (%) measured by X-ray photoelectron spectroscopy (XPS) on coupons exposed to LW or GW for 14 and 30 days.
| Elements | Fe | Cr | P | Cl | S | N | O | C |
|---|---|---|---|---|---|---|---|---|
| 14 days | ||||||||
| LW | 23.57 | — | 1.17 | 0.70 | 0.93 | 2.25 | 42.72 | 28.66 |
| GW | 27.10 | 0.88 | — | — | — | — | 51.60 | 20.42 |
| 30 days | ||||||||
| LW | 11.21 | — | 1.72 | — | 9.92 | 7.85 | 10.36 | 58.94 |
| GW | 14.17 | — | — | — | — | 10.22 | 36.45 | 39.16 |
Fig. 3. (a) S 2p peak of X52 steel coupon surfaces after exposure to LW solution for 30 days, (b) Fe 2p3/2 peak of X52 steel coupon surfaces after exposure to LW solution for 30 days, and (c) Fe 2p3/2 peak of X52 steel coupon surfaces after exposure to GW solution for 30 days.
Fig. 4. (a) Variation in pH of GW and LW after 14 and 30 days of laboratory hydrostatic testing. (b) Weight loss of triplicate X52 steel coupons after exposure to GW or LW after 14 and 30 days.
Fig. 5. CLSM images of X52 steel coupon surfaces after exposing in (a, b) LW solution for 14 and 30 days, or (c, d) after exposing in GW solution for 14 and 30 days.
Fig. 6. (a) Variation in OCP with exposure time, and polarization curves of X52 steel coupons after exposure to LW or GW solutions for (b) 14 and (c) 30 days.
| icorr (A/cm2) | Ecorr (V) vs. SCE | |
|---|---|---|
| 14 days | ||
| GW | 2.58 × 10-6 | -0.719 |
| LW | 1.74 × 10-5 | -0.738 |
| 30 days | ||
| GW | 6.56 × 10-6 | -0.903 |
| LW | 1.48 × 10-5 | -0.848 |
Table 4 Corrosion parameters obtained from dynamic potential polarization curves of X52 steel coupons exposed to GW or LW for 14 and 30 days, respectively.
| icorr (A/cm2) | Ecorr (V) vs. SCE | |
|---|---|---|
| 14 days | ||
| GW | 2.58 × 10-6 | -0.719 |
| LW | 1.74 × 10-5 | -0.738 |
| 30 days | ||
| GW | 6.56 × 10-6 | -0.903 |
| LW | 1.48 × 10-5 | -0.848 |
Fig. 8. Equivalent circuits used for simulating the impedance spectra (Fig. 7) of X52 steel coupons exposed in (a) GW for 30 days as well as LW for the first 20 days, and (b) LW solution after 20 days. Rs and Rct display the solution resistance and charge transfer resistance, respectively. Rf represents the film resistance, Qf represents the constant phase element of the surface film, Qd1 represents the constant-phase element, and W is Warburg element.
Fig. 10. Relative distribution of (a) bacterial and (b) archaeal 16S rRNA gene sequences at the genus level. LW1b represents microorganisms in biofilms attached to X52 steel coupon surfaces after exposure to LW without added culture media; LW2b represents microorganisms in biofilms attached to X52 steel coupon surfaces after exposure to LW with added 2216E culture media.
Fig. 11. Live/dead CLSM 3-D images of biofilms and biofilm thickness from (a) X52 steel exposed to LW1 for 14 days, (b) X52 steel exposed to LW2 for 14 days, (c) X52 steel exposed to LW1 for 30 days, and (d) X52 steel exposed in LW2 for 30 days. LW1 represents incubation in lake water alone, and LW2 represent incubation in lake water with added 2216E culture media.
| [1] | R.I. Ray, J.S. Lee, B.J. Little, T.L. Gerke, Mater. Corros. 61 (2010) 993-999. |
| [2] |
P. Sarin, V.L. Snoeyink, J. Bebee, K.K. Jim, M.A. Beckett, W.M. Kriven, J.A. Clement, Water Res. 38 (2004) 1259-1269.
URL PMID |
| [3] |
C.C.C.R. De Carvalho, Front. Mar. Sci. 5 (2018), http://dx.doi.org/10.3389/fmars.2018.00126.
URL PMID |
| [4] |
I. Neria-González, E.T. Wang, F. Ramírez, J.M. Romero, C. Hernández-Rodríguez, Anaerobe 12 ( 2006) 122-133.
URL PMID |
| [5] | W. Liu, Eng. Fail. Anal. 42 (2014) 109-120. |
| [6] | S. Bhat, B. Kumar, S.R. Prasad, M.V. Katarki, Mater. Perform. 50 (2011) 50-54. |
| [7] | R. Xiao, G. Xiao, B. Huang, J. Feng, Q. Wang, Eng. Fail. Anal. 68 (2016) 113-121. |
| [8] | A. Darwin, K. Annadorai, K. Heidersbach, Corrosion 87 ( 2010) 155-156. |
| [9] |
T.R. Lenhart, K.E. Duncan, I.B. Beech, J.A. Sunner, W. Smith, V. Bonifay, B. Biri, J.M. Suflita, Biofouling 30 ( 2014) 823-835.
DOI URL |
| [10] |
K.E. Duncan, L.M. Gieg, V.A. Parisi, R.S. Tanner, S.G. Tringe, J. Bristow, J.M. Suflita, Environ. Sci. Technol. 43 (2009) 7977-7984.
URL PMID |
| [11] | K. Zhao, T. Gu, I. Cruz, A. Kopliku, NACE International, 2010. |
| [12] | R. Prasad, US Patent No. 6815208 B2, 2004. |
| [13] |
J.T. Rosnes, T. Torsvik, T. Lien, Appl. Environ. Microbiol. 57 (1991) 2302-2307.
URL PMID |
| [14] | P.F. Sanders, UK Corrosion 98 ( 1998) 15. |
| [15] | R. Jia, D. Yang, H.B. Abd Rahman, T. Gu, Corros. Sci. 139 (2018) 301-308. |
| [16] | M. Lv, M. Du, Rev. Environ. Sci. Biotechnol. 17 (2018) 431-446. |
| [17] | R. Jia, D. Yang, H.H. Al-Mahamedh, T. Gu, Ind. Eng. Chem. Res. 56 (2017) 7640-7649. |
| [18] | R.B. Eckert, T.L. Skovhus, Int. Biodeterior. Biodegrad. 126 (2018) 169-176. |
| [19] |
D. Xu, Y. Li, F. Song, T. Gu, Corros. Sci. 77 (2013) 385-390.
DOI URL |
| [20] | D. Xu, Y. Li, T. Gu, Bioelectrochemistry 110 ( 2016) 52-58. |
| [21] | R. Jia, T. Unsal, D. Xu, Y. Lekbach, T. Gu, Int. Biodeterior. Biodegrad. 137 (2019) 42-58. |
| [22] |
F.L. Heggendorn, A.G.M. Fraga, D. de C. Ferreira, L.S. Gonc¸ alves, V. de O. F. Lione, M. T. S. Lutterbach, Int. J. Dent. 2018 (2018), 8303450.
URL PMID |
| [23] |
L. Daniels, N. Belay, B.S. Rajagopal, P.J. Weimer, Science 237 ( 1987) 509-511.
URL PMID |
| [24] | J. Larsen, K. Rasmussen, H. Pedersen, K. Sørensen, T. Lundgaard, T.L. Skovhus, NACE International, 2010. |
| [25] |
H.S. Park, I. Chatterjee, X. Dong, S.H. Wang, C.W. Sensen, S.M. Caffrey, T.R. Jack, J. Boivin, G. Voordouw, Appl. Environ. Microbiol. 77 (2011) 6908-6917.
URL PMID |
| [26] | P.A.P. Jaramillo, O. Snoeyenbos-West, C. Loescher, B. Thamdrup, A.E. Rotaru, , BioRxiv, 2019,530386. |
| [27] |
R. Jia, D. Yang, D. Xu, T. Gu, Front. Microbiol. 8 (2017) 2335.
URL PMID |
| [28] | H. Wan, D. Song, D. Zhang, C. Du, D. Xu, Z. Liu, D. Ding, X. Li, Bioelectrochemistry 121 ( 2018) 18-26. |
| [29] |
D. Xu, Y. Li, F. Song, T. Gu, Corros. Sci. 77 (2013) 385-390.
DOI URL |
| [30] | D. Liu, R. Jia, D. Xu, H. Yang, Y. Zhao, M.S. Khan, S. Huang, J. Wen, K. Yang, T. Gu, J. Mater, Sci. Technol. 35 (2019) 2494-2502. |
| [31] | Y. Dong, Y. Lekbach, Z. Li, D. Xu, S. El Abed, S.I. Koraichi, F. Wang, J. Mater, Sci. Technol. 37 (2020) 200-206. |
| [32] |
H.Y. Tang, D.E. Holmes, T. Ueki, P.A. Palacios, D.R. Lovley, MBio 10 ( 2019), e00303-19.
URL PMID |
| [33] |
J. Philips, N.V. den Driessche, K.D. Paepe, A. Prévoteau, J.A. Gralnick, J.B.A. Arends, K. Rabaey, Appl. Environ. Microbiol. 84 (2018) e01154-18.
URL PMID |
| [34] | M.S. khan, Z. Li, K. Yang, D. Xu, C. Yang, D. Liu, Y. Lekbach, E. Zhou, P. Kalnaowakul, J. Mater, Sci. Technol. 35 (2019) 216-222. |
| [35] | H. Li, E. Zhou, Y. Ren, D. Zhang, D. Xu, C. Yang, H. Feng, Z. Jiang, X. Li, T. Gu, K. Yang, Corros. Sci. 111 (2016) 811-821. |
| [36] |
H. Li, E. Zhou, D. Zhang, D. Xu, J. Xia, C. Yang, H. Feng, Z. Jiang, X. Li, T. Gu, K. Yang, Sci. Rep. 6 (2016) 20190.
DOI URL PMID |
| [37] | S.J. Yuan, A.M.F. Choong, S.O. Pehkonen, Corros. Sci. 49 (2007) 4352-4385. |
| [38] | Y. Jin, Z. Li, E. Zhou, Y. Lekbach, D. Xu, S. Jiang, F. Wang, Electrochim. Acta 316 ( 2019) 93-104. |
| [39] | E. Zhou, H. Li, C. Yang, J. Wang, D. Xu, D. Zhang, T. Gu, Int. Biodeterior. Biodegrad. 127 (2018) 1-9. |
| [40] |
D. Xu, J. Xia, E. Zhou, D. Zhang, H. Li, C. Yang, Q. Li, H. Lin, X. Li, K. Yang, Bioelectrochemistry 113 ( 2017) 1-8.
URL PMID |
| [41] |
F. Yang, B. Shi, Y. Bai, H. Sun, D.A. Lytle, D. Wang, Water Res. 59 (2014) 46-57.
URL PMID |
| [42] | C. Okoro, S. Smith, L. Chiejina, R. Lumactud, D. An, H.S. Park, J. Voordouw, B.P. Lomans, G. Voordouw, J. Ind, Microbiol. Biotechnol. 41 (2014) 665-678. |
| [43] | M.A. Javed, P.R. Stoddart, E.A. Palombo, S.L. McArthur, S.A. Wade, Corros. Sci. 86 (2014) 149-158. |
| [44] | H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, Z.G. Chen, Corros. Sci. 158 (2019), 108081. |
| [45] | H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, Z.G. Chen, Corros. Sci. 144 (2018) 288-300. |
| [46] | D.E. Fouts, S. Szpakowshi, J. Purushe, M. Torralba, R.C. Waterman, M.D. MacNeil, L.J. Alexander, K.E. Nelson, PLoS One 7 ( 2012), e48289. |
| [47] |
M. Chen, X.H. Li, Y.H. He, N. Song, H.Y. Cai, C. Wang, Y.T. Li, H.Y. Chu, L.R. Krumholz, H.L. Jiang, Water Res. 96 (2016) 94-104.
DOI URL PMID |
| [48] | H. Liu, T. Gu, M. Asif, G. Zhang, H. Liu, Corros. Sci. 114 (2017) 102-111. |
| [49] | Z. Zhang, Z. Lei, X. He, Z. Zhang, Y. Yang, N. Sugiura, J. Hazard, Mater. 163 (2009) 1090-1095. |
| [50] |
C.D. Parker, Nature 159 ( 1947) 439-440.
DOI URL PMID |
| [51] |
A.P. Harrison, Annu. Rev. Microbiol. 38 (1984) 265-292.
DOI URL PMID |
| [52] |
S. Li, Y. Zhang, J. Liu, M. Yu, Acta Phys.-Chim. Sin. 24 (2008) 1553-1557.
DOI URL |
| [53] |
X. Liu, J. Xu, J. Huang, M. Huang, T. Wang, S. Bao, W. Tang, T. Fang, RSC Adv. 9 (2019) 3285-3293.
DOI URL |
| [54] |
H.T. Dinh, J. Kuever, M. Mußmann, A.W. Hassel, M. Stratmann, F. Widdel, Nature 427 ( 2004) 829-832.
DOI URL PMID |
| [55] | S. Hiromoto, Metals for Biomedical Devices, Woodhead Publishing, Cambridge, 2010, pp. 99-121. |
| [56] |
A.L. Neal, S. Techkarnjanaruk, A. Dohnalkova, D. McCready, B.M. Peyton, G.G. Geesey, Geochim. Cosmochim. Acta 65 ( 2001) 223-235.
DOI URL |
| [57] |
G. Chen, C.R. Clayton, J. Electrochem. Soc. 144 (1997) 3140-3146.
DOI URL |
| [58] |
J. Duan, B. Hou, Z. Yu, Mat. Sci. Eng. C 26 ( 2006) 624-629.
DOI URL |
| [59] |
R.H. Jung, H. Tsuchiya, S. Fujimoto, Corros. Sci. 58 (2012) 62-68.
DOI URL |
| [60] |
A.N. Buckley, R. Woods, Appl. Surf. Sci. 27 (1987) 437-452.
DOI URL |
| [61] |
S.J. Yuan, S.O. Pehkonen, Colloids Surf. B Biointerfaces 59 ( 2007) 87-99.
URL PMID |
| [62] |
P. Bai, H. Zhao, S. Zheng, C. Chen, Corros. Sci. 93 (2015) 109-119.
DOI URL |
| [63] |
S. Yuan, B. Liang, Y. Zhao, S.O. Pehkonen, Corros. Sci. 74 (2013) 353-366.
DOI URL |
| [64] |
J.L. Junta-Rosso, M.F. Hochella, Geochim. Cosmochim. Acta 60 ( 1996) 305-314.
DOI URL |
| [65] |
D. Enning, J. Garrelfs, Appl. Environ. Microbiol. 80 (2014) 1226-1236.
DOI URL PMID |
| [66] |
G.H. Booth, L. Elford, D.S. Wakerley, Br. Corros. J. 3 (1968) 242-245.
DOI URL |
| [67] |
R.A. King, J.D.A. Miller, J.S. Smith, Br. Corros. J. 8 (1973) 137-141.
DOI URL |
| [68] |
I.A. Davidova, K.E. Duncan, B.M. Perez-Ibarra, J.M. Suflita, Environ. Microbiol. 14 (2012) 1762-1771.
URL PMID |
| [69] |
R. Jia, J.L. Tan, P. Jin, D.J. Blackwood, D. Xu, T. Gu, Corros. Sci. 130 (2018) 1-11.
DOI URL |
| [70] | T. Gu, D. Xu, NACE International, 2013. |
| [71] | T. Gu, K. Zhao, S. Nesic, NACE International, 2009. |
| [72] |
D. Xu, T. Gu, Int. Biodeterior. Biodegrad. 91 (2014) 74-81.
DOI URL |
| [73] | D. Xu, T. Gu, NACE International, 2011. |
| [74] |
J.L. Tan, P.C. Goh, D.J. Blackwood, Corros. Sci. 119 (2017) 102-111.
DOI URL |
| [75] |
J. Wang, B. Hou, J. Xiang, X. Chen, T. Gu, H. Liu, Corros. Sci. 150 (2019) 296-308.
DOI URL |
| [76] |
P. Li, Y. Zhao, Y. Liu, Y. Zhao, D. Xu, C. Yang, T. Zhang, T. Gu, K. Yang, J. Mater, Sci. Technol. 33 (2017) 723-727.
DOI URL |
| [77] |
C. Ruan, L. Yang, Y. Li, Anal. Chem. 74 (2002) 4814-4820.
DOI URL PMID |
| [78] |
A. Dheilly, I. Linossier, A. Darchen, D. Hadjiev, C. Corbel, V. Alonso, Appl. Microbiol. Biotechnol. 79 (2008) 157-164.
DOI URL PMID |
| [79] |
H. Huang, J. Tian, G. Zhang, Z. Pan, Mater. Chem. Phys. 181 (2016) 312-320.
DOI URL |
| [80] |
K. Yin, H. Liu, Y.F. Cheng, Corros. Sci. 145 (2018) 271-282.
DOI URL |
| [81] |
H. Liu, T. Gu, M. Asif, G. Zhang, H. Liu, Corros. Sci. 114 (2017) 102-111.
DOI URL |
| [82] |
H. Zhang, Y. Tian, J. Wan, P. Zhao, Appl. Surf. Sci. 357 (2015) 236-247.
DOI URL |
| [83] |
P. Zhang, D. Xu, Y. Li, Y. Ke, T. Gu, Bioelectrochemistry 101 ( 2015) 14-21.
DOI URL PMID |
| [84] |
H. Liu, C. Fu, T. Gu, G. Zhang, Y. Lv, H. Wang, H. Liu, Corros. Sci. 100 (2015) 484-495.
DOI URL |
| [85] |
H. Liu, D. Xu, K. Yang, H. Liu, Y.F. Cheng, Corros. Sci. 132 (2018) 46-55.
DOI URL |
| [86] |
H. Liu, T. Gu, G. Zhang, H. Liu, Y.F. Cheng, Corros. Sci. 136 (2018) 47-59.
DOI URL |
| [87] | H. Liu, Y.F. Cheng, Electrochim. Acta 266 ( 2018) 312-325. |
| [88] | H. Liu, X. Zhong, H. Liu, Y.F. Cheng, Electrochem. commun. 90 (2018) 1-5. |
| [89] | R. Jia, D. Yang, J. Xu, D. Xu, T. Gu, Corros. Sci. 127 (2017) 1-9. |
| [90] |
S. Ghafari, M. Hasan, M.K. Aroua, Bioresour. Technol. 99 (2008) 3965-3974.
DOI URL PMID |
| [91] |
L. Saiman, Y. Chen, S. Tabibi, P. San Gabriel, J. Zhou, Z. Liu, L. Lai, S. Whittier, J. Clin. Microbiol. 39 (2001) 3942-3945.
DOI URL PMID |
| [92] | A. AbdSharad, G. Usup, F.K. Sahrani, A. Ahmad, K. Ibrahim, K.Hj. Badri, M.H.Hj. Jumali, M.S.M. Noorani, N. Ibrahim, N.H.A. Rasol, W.Z.W. Yaacob, AIP Conf. Proc. 1784 (2016), 020010. |
| [93] | J. Yang, J. Shao, L. Wu, Y. Li, X. Zhao, S. Wang, D. Sun, J. Sun, Int. J. Electrochem. Sci. ( 2019) 9193-9205. |
| [94] | A.E. Rotaru, P. Malla Shrestha, F. Liu, M. Shrestha, D. Shrestha, M. Embree, K. Zengler, C. Wardman, K.P. Nevin, D.R. Lovley, Energy Environ. Sci. 7 (2014) 408-415. |
| [95] |
A.E. Rotaru, P.M. Shrestha, F. Liu, B. Markovaite, S. Chen, K.P. Nevin, D.R. Lovley, Appl. Environ. Microbiol. 80 (2014) 4599-4605.
DOI URL PMID |
| [96] |
K.R. Sowers, S.F. Baron, J.G. Ferry, Appl. Environ. Microbiol. 47 (1984) 971-978.
URL PMID |
| [97] |
T.J. Lyimo, A. Pol, H.J. Op den Camp, H.R. Harhangi, G.D. Vogels, Int. J. Syst. Evol. Microbiol. 50 (2000) 171-178.
URL PMID |
| [98] |
S. Shimizu, R. Upadhye, Y. Ishijima, T. Naganuma, Int. J. Syst. Evol. Microbiol. 61 (2011) 2503-2507.
DOI URL PMID |
| [99] |
D.E. Holmes, T. Ueki, H.Y. Tang, J. Zhou, J.A. Smith, G. Chaput, D.R. Lovley, MBio 10 ( 2019) e00789-19.
DOI URL PMID |
| [100] |
R. Boopathy, L. Daniels, Appl. Environ. Microbiol. 57 (1991) 2104-2108.
URL PMID |
| No related articles found! |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||