材料科学与技术 ›› 2020, Vol. 48 ›› Issue (0): 63-71.DOI: 10.1016/j.jmst.2020.01.011
收稿日期:2019-06-25
接受日期:2019-10-04
出版日期:2020-07-01
发布日期:2020-07-13
Juan Houa, Wei Chena, Zhuoer Chenb, Kai Zhanga,b,**(
), Aijun Huanga,b,*(
)
Received:2019-06-25
Accepted:2019-10-04
Online:2020-07-01
Published:2020-07-13
Contact:
Kai Zhang,Aijun Huang
. [J]. 材料科学与技术, 2020, 48(0): 63-71.
Juan Hou, Wei Chen, Zhuoer Chen, Kai Zhang, Aijun Huang. Microstructure, tensile properties and mechanical anisotropy of selective laser melted 304L stainless steel[J]. J. Mater. Sci. Technol., 2020, 48(0): 63-71.
Fig. 1. (a) SEM image of the 304 L SS powders, (b) optical micrograph of the SLMed 304 L SS sample fabricated using optimized parameters showing very low defect density and (c) the schematic of tensile specimens in building direction (vertical sample) and layer directions (horizontal sample).
| Sample | C | N | Si | Mn | P | S | Cu | Cr | Ni | Mo | Co | O |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Powder | 0.006 | 0.013 | 0.056 | 0.016 | 0.027 | 0.001 | 0.033 | 18.95 | 9.48 | 0.87 | 0.01 | 0.029 |
| SLMed | 0.014 | 0.013 | 0.065 | 0.054 | 0.027 | 0.003 | 0.032 | 19.07 | 9.62 | 0.83 | 0.016 | 0.031 |
Table 1 Chemical compositions of as-received powder and SLMed 304 L stainless steel (wt%).
| Sample | C | N | Si | Mn | P | S | Cu | Cr | Ni | Mo | Co | O |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Powder | 0.006 | 0.013 | 0.056 | 0.016 | 0.027 | 0.001 | 0.033 | 18.95 | 9.48 | 0.87 | 0.01 | 0.029 |
| SLMed | 0.014 | 0.013 | 0.065 | 0.054 | 0.027 | 0.003 | 0.032 | 19.07 | 9.62 | 0.83 | 0.016 | 0.031 |
Fig. 2. Optical micrographs of (a) ‘fish scale’ morphology and (b) columnar grains with melt pool boundary on vertical plane, and (c) laser exposure traces and (d) equiaxed grains on horizontal plane at low and high magnification respectively, in the as-fabricated 304 L SS. The nanoscale cellular subgrains on vertical and horizontal planes are revealed by the SEM micrographs taken at higher magnification and inserted in (b) and (d), respectively.
Fig. 3. EBSD unique grain colour maps of (a) the columnar grains aligned in the building direction on the vertical plane and (b) grains on the horizontal plane. The step size used for the EBSD scan is 1 μm.
Fig. 4. XRD pattern of phase identification in the as fabricated 304 L stainless steel, with step size of 0.02° and 1 s acquisition time per step. Fine scanning is performed in a small range from 45° to 48° with an acquisition time of 10 s per 0.02° step, with the spectrum inserted.
Fig. 5. EBSD results of (a) phase distribution map with the ferrite in green, σ phase in red and austenite matrix in canary as shown by the colour coding; (b) grain boundary map with low-angle grain boundaries in green, high angle grain boundaries (labelled as random boundary in the colour coding) in blue and twin boundary in red colour coding; (c) the inverse pole figure orientation mapping and pole figure of austenite matrix and precipitates of ferrite and σ phase.
Fig. 6. Bright filed TEM images of SLMed 304 L stainless steel: (a) cellular sub-grain structures with dislocation tangles as the cell wall, the associate selective area diffraction (SAD) pattern is taken from the austenite matrix indicated by the red dashed circle; (b) needle like ferrites observed inside the austenite matrix and confirmed by the SAD pattern taken at the location indicated by the red dashed circle; (c) square particles of the σ phase identified by EDS chemical composition.
| Sample | UTS (MPa) | YS (MPa) | Elongation (%) | Reduction of area (%) | ||||
|---|---|---|---|---|---|---|---|---|
| X | Z | X | Z | X | Z | X | Z | |
| As-built 304 L SS | 655 | 615 | 458 | 414 | 65.5 | 71.5 | 78 | 81 |
| 650 | 610 | 456 | 408 | 68.5 | 72 | 80 | 81 | |
| 654 | -- | 457 | -- | 67 | -- | 76 | -- | |
| Cast 304 L SS (ASTM) | ≥485 | ≥170 | ≥40 | ≥60 | ||||
| Wrought 304 L SS (ASTM) | ≥520 | ≥205 | ≥40 | |||||
Table 2 Tensile property of as fabricated 304 L stainless steel, casting, and wrought standards (In this table, the horizontal samples are labelled as X and the vertical samples are labelled as Z).
| Sample | UTS (MPa) | YS (MPa) | Elongation (%) | Reduction of area (%) | ||||
|---|---|---|---|---|---|---|---|---|
| X | Z | X | Z | X | Z | X | Z | |
| As-built 304 L SS | 655 | 615 | 458 | 414 | 65.5 | 71.5 | 78 | 81 |
| 650 | 610 | 456 | 408 | 68.5 | 72 | 80 | 81 | |
| 654 | -- | 457 | -- | 67 | -- | 76 | -- | |
| Cast 304 L SS (ASTM) | ≥485 | ≥170 | ≥40 | ≥60 | ||||
| Wrought 304 L SS (ASTM) | ≥520 | ≥205 | ≥40 | |||||
Fig. 9. Fraction of the equilibrium phase versus temperature calculated through Thermal-Calc software according to the specific chemical composition of 304 L stainless steel in this study.
Fig. 10. Comparison of the phase distribution mappings on the horizontal plane (a) and on the vertical plane (b) obtained by the EBSD phase measurement at a high magnification with the step size of 0.075 μm.
| [1] | P. Köhnen, C. Haase, J. Bültmann, S. Ziegler, J.H. Schleifenbaum, W. Bleck, Mater. Des. 145 (2018) 205-217. |
| [2] | D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392. |
| [3] | N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn, J. Mater. Sci. Technol. 35 (2018) 242-269. |
| [4] | S. Cao, R. Chu, X. Zhou, K. Yang, Q. Jia, C. Lim, A. Huang, X. Wu, J. Alloys Compd. 744 (2018) 357-363. |
| [5] | A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, M. Carboneras, R. Arrabal, Acta Mater. 55 (2007) 2239-2251. |
| [6] | K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Mater. Sci. Eng. A 625 ( 2015) 221-229. |
| [7] | M. Lodhi, K. Deen, W. Haider, Matererials 1 ( 2018) 1-11. |
| [8] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, Nat. Mater. 17 (2018) 63-70.
URL PMID |
| [9] | Y. Zhong, L. Liu, S. Wikman, D. Cui, Z. Shen, J. Nucl. Mater. 470 (2016) 170-178. |
| [10] | N. Yang, J. Yee, B. Zheng, K. Gaiser, T. Reynolds, L. Clemon, W.Y. Lu, J.M. Schoenung, E.J. Lavernia, J. Therm. Spray Technol. 26 (2017) 610-626. |
| [11] | R. Pokharel, L. Balogh, D.W. Brown, B. Clausen, G.T. Gray, V. Livescu, S.C. Vogel, S. Takajo, Scr. Mater. 155 (2018) 16-20. |
| [12] | Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson, D. Fabijanic, Scr. Mater. 141 (2017) 94-98. |
| [13] | J.T. Miller, H.J. Martin, E. Cudjoe, Addit. Manuf. 23 (2018) 272-286. |
| [14] | P. Guo, B. Zou, C. Huang, H. Gao, J. Mater. Process. Technol. 240 (2017) 12-22. |
| [15] | X. Chen, J. Li, X. Cheng, H. Wang, Z. Huang, Mater. Sci. Eng. A 715 ( 2018) 307-314. |
| [16] | M. Ziętala, T. Durejko, M. Polański, I. Kunce, T. Płociński, W. Zieliński, M. Łazińska, W. Stępniowski, T. Czujko, K.J. Kurzydłowski, Z. Bojar, Mater. Sci. Eng. A 677 ( 2016) 1-10. |
| [17] | H.J. Kim, S.H. Jeon, S.T. Kim, I.S. Lee, Y.S. Park, K.T. Kim, Y.S. Kim, Corros. Sci. 87 (2014) 60-70. |
| [18] | D.R. Eo, S.H. Park, J.W. Cho, Mater. Des. 155 (2018) 212-219. |
| [19] | N. Kang, W. Ma, L. Heraud, M. El, F. Li, M. Liu, Addit. Manuf. 22 (2018) 104-110. |
| [20] | M.S. Pham, B. Dovgyy, P.A. Hooper, Mater. Sci. Eng. A 704 ( 2017) 102-111. |
| [21] | C.S. Kriewall, A.T. Sutton, M.C. Leu, J.W. Newkirk, B. Brown, Solid Freeform Fabrication ( 2016) 625-639. |
| [22] | Q.B. Nguyen, Z. Zhu, F.L. Ng, B.W. Chua, S.M.L. Nai, J. Wei, J. Mater. Sci. Technol. 35 (2018) 388-394. |
| [23] | Z. Wang, T.A. Palmer, A.M. Beese, Acta Mater. 110 (2016) 226-235. |
| [24] | K. Zhang, S. Wang, W. Liu, X. Shan, Mater. Des. 55 (2014) 104-119. |
| [25] | W.E. White, I.L. May, Metallography 5 ( 1972) 333-345. |
| [26] |
C.C. Tseng, Y. Shen, S.W. Thompson, M.C. Mataya, G. Krauss, Metall. Mater. Trans. A 25 ( 1994) 1147-1158.
DOI URL |
| [27] | S. Sabooni, F. Karimzadeh, M.H. Enayati, A.H.W. Ngan, H. Jabbari, Mater. Charact. 109 (2015) 138-151. |
| [28] | J.W. Fu, Y.S. Yang, J. Alloys Compd. 580 (2013) 191-194. |
| [29] | H. Inoue, T. Koseki, Acta Mater. 124 (2017) 430-436. |
| [30] | D. Baldissin, L. Battezzati, Scr. Mater. 55 (2006) 839-842. |
| [31] | T.W. Eagar, J.W. Elmer, S.M. Allen, Metall. Trans. A 20 ( 1989) 2117-2131. |
| [32] | D.A. Macatangay, S. Thomas, N. Birbilis, R.G. Kelly, Corrosion 74 ( 2018) 153-157. |
| No related articles found! |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||