材料科学与技术 ›› 2020, Vol. 48 ›› Issue (0): 163-174.DOI: 10.1016/j.jmst.2019.12.038
收稿日期:2019-10-14
									
				
									
				
											接受日期:2019-12-05
									
				
											出版日期:2020-07-01
									
				
											发布日期:2020-07-13
									
			
        
               		Jing Zhonga, Lijun Zhanga,b,*(
), Xiaoke Wua, Li Chena, Chunming Dengb
			  
			
			
			
                
        
    
Received:2019-10-14
									
				
									
				
											Accepted:2019-12-05
									
				
											Online:2020-07-01
									
				
											Published:2020-07-13
									
			Contact:
					Lijun Zhang   
							. [J]. 材料科学与技术, 2020, 48(0): 163-174.
Jing Zhong, Lijun Zhang, Xiaoke Wu, Li Chen, Chunming Deng. A novel computational framework for establishment of atomic mobility database directly from composition profiles and its uncertainty quantification[J]. J. Mater. Sci. Technol., 2020, 48(0): 163-174.
| Parameter | Value | Optimization notation | 
|---|---|---|
| $Φ_{A}^{ A,0}$ | -150000-50T | Fixed | 
| $Φ_{A}^{ B,0}$ | -150000-50T | Fixed | 
| $Φ_{B}^{ A,0}$ | -150000-50T | Fixed | 
| $Φ_{B}^{ B,0}$ | -150000-50T | Fixed | 
| $Φ_{A}^{ A,B,0}$ | -80000-50T | 1000A0+B0T | 
| $Φ_{B}^{ A,B,0}$ | -80000-50T | 1000A1+B1T | 
Table 1 Preset atomic mobility parameters in a hypothetical binary system.
| Parameter | Value | Optimization notation | 
|---|---|---|
| $Φ_{A}^{ A,0}$ | -150000-50T | Fixed | 
| $Φ_{A}^{ B,0}$ | -150000-50T | Fixed | 
| $Φ_{B}^{ A,0}$ | -150000-50T | Fixed | 
| $Φ_{B}^{ B,0}$ | -150000-50T | Fixed | 
| $Φ_{A}^{ A,B,0}$ | -80000-50T | 1000A0+B0T | 
| $Φ_{B}^{ A,B,0}$ | -80000-50T | 1000A1+B1T | 
| Noise Level | Couple Number | A0 | A1 | B0 | B1 | 
|---|---|---|---|---|---|
| δ=0 | 1 (I) | -41.18 | -110.33 | -102.53 | -134.66 | 
| 2 (II) | -122.07 | -121.45 | -97.69 | -9.34 | |
| 3 (III) | -76.18 | -96.59 | -103.71 | -33.29 | |
| δ=0.001 | 1 (I) | -107.95 | -133.27 | -15.60 | 17.33 | 
| 2 (II) | -174.47 | -172.29 | 42.29 | 38.04 | |
| 3 (III) | -106.08 | -93.40 | -25.38 | -37.45 | |
| δ=0.01 | 1 (I) | 1.41 | -179.40 | -169.48 | 92.59 | 
| 2 (II) | -134.77 | -199.63 | 0.34 | 70.64 | |
| 3 (III) | -153.12 | -105.73 | -125.77 | -22.83 | |
| True value | -80 | -80 | -50 | -50 | |
Table 2 Posterior estimation of atomic mobility parameters for the hypothetical binary system.
| Noise Level | Couple Number | A0 | A1 | B0 | B1 | 
|---|---|---|---|---|---|
| δ=0 | 1 (I) | -41.18 | -110.33 | -102.53 | -134.66 | 
| 2 (II) | -122.07 | -121.45 | -97.69 | -9.34 | |
| 3 (III) | -76.18 | -96.59 | -103.71 | -33.29 | |
| δ=0.001 | 1 (I) | -107.95 | -133.27 | -15.60 | 17.33 | 
| 2 (II) | -174.47 | -172.29 | 42.29 | 38.04 | |
| 3 (III) | -106.08 | -93.40 | -25.38 | -37.45 | |
| δ=0.01 | 1 (I) | 1.41 | -179.40 | -169.48 | 92.59 | 
| 2 (II) | -134.77 | -199.63 | 0.34 | 70.64 | |
| 3 (III) | -153.12 | -105.73 | -125.77 | -22.83 | |
| True value | -80 | -80 | -50 | -50 | |
																																											Fig. 4. Histogram of the distribution of the concerned parameters, where 0, 1, 2 and 3 in the legends stand for A0, B0, A1 and B1, respectively. The mean values of the parameters are denoted with the solid lines and the confidence intervals with the quantile of [0.16, 0.84] are plotted with the dashed lines.
																																											Fig. 5. Comparison between the simulated composition profiles and the experimental results for the diffusion couples of the hypothetical binary systems: (a)?(c) the optimized results with one diffusion couple, (d)?(f) for two diffusion couples and (g)?(i) for three diffusion couples.
| Parameter | Value | Optimization notation | 
|---|---|---|
| $Φ_{A}^{ A,0} $ | -125000-88T | Fixed | 
| $Φ_{A}^{ B,0} $ | -125000-88T | Fixed | 
| $Φ_{A}^{ C,0} $ | -125000-88T | Fixed | 
| $Φ_{B}^{ A,0} $ | -125000-88T | Fixed | 
| $Φ_{B}^{ B,0} $ | -125000-88T | Fixed | 
| $Φ_{B}^{ C,0} $ | -125000-88T | Fixed | 
| $Φ_{ C }^{ A,0} $ | -125000-88T | Fixed | 
| $Φ_{ C }^{ B,0} $ | -125000-88T | Fixed | 
| $Φ_{ C }^{ C,0} $ | -125000-88T | Fixed | 
| $Φ_{ A }^{ B,C,0} $ | -50000 | 1000A0 | 
| $Φ_{ B}^{ A,C,0} $ | -50000 | 1000A1 | 
| $Φ_{ C}^{ A,C,0} $ | -50000 | 1000A2 | 
Table 3 Preset atomic mobility parameters in a hypothetical ternary system.
| Parameter | Value | Optimization notation | 
|---|---|---|
| $Φ_{A}^{ A,0} $ | -125000-88T | Fixed | 
| $Φ_{A}^{ B,0} $ | -125000-88T | Fixed | 
| $Φ_{A}^{ C,0} $ | -125000-88T | Fixed | 
| $Φ_{B}^{ A,0} $ | -125000-88T | Fixed | 
| $Φ_{B}^{ B,0} $ | -125000-88T | Fixed | 
| $Φ_{B}^{ C,0} $ | -125000-88T | Fixed | 
| $Φ_{ C }^{ A,0} $ | -125000-88T | Fixed | 
| $Φ_{ C }^{ B,0} $ | -125000-88T | Fixed | 
| $Φ_{ C }^{ C,0} $ | -125000-88T | Fixed | 
| $Φ_{ A }^{ B,C,0} $ | -50000 | 1000A0 | 
| $Φ_{ B}^{ A,C,0} $ | -50000 | 1000A1 | 
| $Φ_{ C}^{ A,C,0} $ | -50000 | 1000A2 | 
| Noise Level | Couples | A0 | A1 | A2 | 
|---|---|---|---|---|
| δ=0 | 2 (I) | -50.93 | -51.59 | -56.21 | 
| 4 (II) | -50.46 | -52.22 | -51.95 | |
| 8 (III) | -50.18 | -52.61 | -52.34 | |
| δ=0.001 | 2 (I) | -49.44 | -50.51 | -105.82 | 
| 4 (II) | -49.95 | -52.79 | -52.34 | |
| 8 (III) | -49.99 | -53.11 | -54.26 | |
| δ=0.01 | 2 (I) | -53.71 | -50.03 | -67.04 | 
| 4 (II) | -50.46 | -50.33 | -51.25 | |
| 8 (III) | -48.09 | -53.45 | -62.13 | |
| True value | -50 | -50 | -50 | |
Table 4 Posterior estimation of atomic mobility parameters for the hypothetical ternary system.
| Noise Level | Couples | A0 | A1 | A2 | 
|---|---|---|---|---|
| δ=0 | 2 (I) | -50.93 | -51.59 | -56.21 | 
| 4 (II) | -50.46 | -52.22 | -51.95 | |
| 8 (III) | -50.18 | -52.61 | -52.34 | |
| δ=0.001 | 2 (I) | -49.44 | -50.51 | -105.82 | 
| 4 (II) | -49.95 | -52.79 | -52.34 | |
| 8 (III) | -49.99 | -53.11 | -54.26 | |
| δ=0.01 | 2 (I) | -53.71 | -50.03 | -67.04 | 
| 4 (II) | -50.46 | -50.33 | -51.25 | |
| 8 (III) | -48.09 | -53.45 | -62.13 | |
| True value | -50 | -50 | -50 | |
																																											Fig. 6. Histogram of the distribution of the concerned parameters, where 0, 1 and 2 in the legends stand for A0, A1 and A2, respectively. The mean values of the parameters are denoted with the solid lines and the confidence intervals with the quantile of [0.16, 0.84] are plotted with dashed lines.
																																											Fig. 7. Model-predicted diffusion paths due to the optimization results in the hypothetical ternary system: (a) noise level δ=0; (b) noise level δ=0.001; (c) noise level δ=0.01.
| Parameter | Value | Reference | 
|---|---|---|
| $Φ_{Ni}^{Ni,0}$ | -271378-81.79T | [ |  
| $Φ_{Ni}^{Al,0}$ | -144600-64.85T | [ |  
| $Φ_{Ni}^{Ta,0}$ | -265535-75.14T | [ |  
| $Φ_{Al}^{Ni,0}$ | -268381-71.04T | [ |  
| $Φ_{Al}^{Al,0}$ | -123111.56-97.34T | [ |  
| $Φ_{Al}^{Ta,0}$ | -265535-75.14T | [ |  
| $Φ_{Ta}^{ Ni,0} $ | -276000-72.8T | [ |  
| $Φ_{Ta}^{ Al,0}$ | -123111.56-97.34T | [ |  
| $Φ_{Ta}^{ Ta,0}$ | -265535-75.14T | [ |  
| $Φ_{Al}^{ Al,Ni,0}$ | -27571 | [ |  
| $Φ_{Al}^{ Ni,Ta,0}$ | $-604243.97_{-15648.03}^{+15557.70}$ | This work | 
| $Φ_{Ta}^{ Al,Ni,0}$ | $-346170.48_{-21561.40}^{+21316.50}$ | This work | 
| $Φ_{Ta}^{ Ni,Ta,0}$ | $-458378.53_{-13157.47}^{+13074.30}$ | This work | 
Table 5 List of atomic mobility parameters of fcc phase in the Ni-Al-Ta system assessed in the present work and also taken from the literature.
| Parameter | Value | Reference | 
|---|---|---|
| $Φ_{Ni}^{Ni,0}$ | -271378-81.79T | [ |  
| $Φ_{Ni}^{Al,0}$ | -144600-64.85T | [ |  
| $Φ_{Ni}^{Ta,0}$ | -265535-75.14T | [ |  
| $Φ_{Al}^{Ni,0}$ | -268381-71.04T | [ |  
| $Φ_{Al}^{Al,0}$ | -123111.56-97.34T | [ |  
| $Φ_{Al}^{Ta,0}$ | -265535-75.14T | [ |  
| $Φ_{Ta}^{ Ni,0} $ | -276000-72.8T | [ |  
| $Φ_{Ta}^{ Al,0}$ | -123111.56-97.34T | [ |  
| $Φ_{Ta}^{ Ta,0}$ | -265535-75.14T | [ |  
| $Φ_{Al}^{ Al,Ni,0}$ | -27571 | [ |  
| $Φ_{Al}^{ Ni,Ta,0}$ | $-604243.97_{-15648.03}^{+15557.70}$ | This work | 
| $Φ_{Ta}^{ Al,Ni,0}$ | $-346170.48_{-21561.40}^{+21316.50}$ | This work | 
| $Φ_{Ta}^{ Ni,Ta,0}$ | $-458378.53_{-13157.47}^{+13074.30}$ | This work | 
																																											Fig. 9. Simulated composition profiles of fcc Ni-Ta diffusion couples at different temperatures, compared with the experimental data [30] (denoted in points), and the model-predicted ones (denoted in dashed lines) due to the atomic mobilities assessed by Chen et al. [30] and DICTRA.
																																											Fig. 10. Comparison between the calculated interdiffusion coefficients ($\tilde{D}_{\text{TaTa}}^{\text{Ni}}$) due to the presently obtained atomic mobilities and the experimental results from Ref. [37]. The presently evaluated $\tilde{D}_{\text{TaTa}}^{\text{Ni}}$ based on the experimental composition profiles [30] and Boltzmann-Matano method in combination with the distribution functions [35] are also superimposed for comparison.
																																											Fig. 11. Comparison of the simulated composition profiles and the experimental data [40] for the diffusion couples of Ni-Al-Ta systems: (a-1)?(a-3) Composition profiles at 1473 K; (b-1)?(b-3) Composition profiles at 1523 K; (c-1)?(c-3) Composition profiles at 1573 K.
																																											Fig. 12. Comparison of the interdiffusion coefficients calculated by Matano-Kirkaldy methods (denoted as M-K) and the numerical inverse method (denoted as HitDIC).
																																											Fig. 13. Histogram of the distribution of the rescaled concerned parameter where 0 in the legend stands for $\Phi _{\text{Ta}}^{\text{Ni},\text{Ta},0}$/1000.
| [1] | S. Ghosh, A. Karma, M. Plapp, S. Akamatsu, S. Bottin-Rousseau, G. Faivre, ActaMater. 175 (2019) 214-221. | 
| [2] | L. Zhang, Diffusion Foundations Vol. 15: Modeling of Diffusion andDiffusion-Controlled Phase Transformations in Alloys, Trans TechPublications, Limited, 2018. | 
| [3] | A. Borgenstam, L. Höglund, J. Ågren, A. Engström, DICTRA, J. Phase Equilib. 21 (2000) 269-280. | 
| [4] | I. Steinbach, L. Zhang, M. Plapp, Acta Mater. 60 (2012) 2689-2701. | 
| [5] | L. Zhang, I. Steinbach, Acta Mater. 60 (2012) 2702-2710. | 
| [6] | L. Gui, M. Long, S. Wu, Z. Dong, D. Chen, Y. Huang, H. Duan, L. Vitos, J. Mater. Sci. Technol. 35 (2019) 2383-2395. | 
| [7] | J. Andersson, J. Ågren, J. Appl. Phys. 72 (1992) 1350-1355. | 
| [8] | I. Steinbach, Model. Simul. Mater. Sci. Eng. 17 (2009), 073001. | 
| [9] | Z.-K. Liu, J. Phase Equilib. Diffus. 39 (2018) 635-649. | 
| [10] | N.H. Paulson, B.J. Bocklund, R.A. Otis, Z.-K. Liu, M. Stan, Acta Mater. 174 (2019) 9-15. | 
| [11] | P. Honarmandi, T.C. Duong, S.F. Ghoreishi, D. Allaire, R. Arroyave, Acta Mater. 164 (2019) 636-647. | 
| [12] | X. Wu, J. Zhong, L. Zhang, Acta Mater. 188 (2020) 665-676. | 
| [13] |  
											  A. Ben Abdellah, J.G. Gasser, K. Bouziane, B. Grosdidier, M. Busaidi, Phys. Rev. B 76 (2007), 174203. 
											 												 DOI URL  | 
										
| [14] | J. Lechelle, S. Noyau, L. Aufore, A. Arredondo, F. Audubert, Diff. Fundament. 17 (2012) 1-39. | 
| [15] |  
											  W.J. Boettinger, M.E. Williams, K.-W. Moon, G.B. McFadden, P.N. Patrone, J.H. Perepezko, J. Phase Equilib. Diffus. 38 (2017) 750-763. 
											 												 DOI URL  | 
										
| [16] | C. Campbell, J. Phase Equilib. Diffus. 26 (2005) 435-440. | 
| [17] | J.V. Beck, B. Blackwell, C.R.S. Clair Jr, Inverse Heat Conduction: Ill-posedProblems, James Beck, 1985. | 
| [18] | Y.L. Keung, J. Zou, Inverse Probl. 14 (1998) 83. | 
| [19] | A. Tarantola, Society for Industrial and Applied Mathematics, 2005. | 
| [20] | H. Lu, Q. Shen, J. Chen, X. Wu, X. Fu, J. Petrol. Sci. Eng. 174 (2019) 189-200. | 
| [21] |  
											  T.R. Covington, P. Robinan Gentry, C.B. Van Landingham, M.E. Andersen, J.E. Kester, H.J. Clewell, Regul. Toxicol. Pharmacol. 47 (2007) 1-18. 
											 												 URL PMID  | 
										
| [22] | C.J. Geyer, E.A. Thompson, J. Am. Stat. Assoc. 90 (1995) 909-920. | 
| [23] | W. Chen, J. Zhong, L. Zhang, MRS Commun. 6 (2016) 295-300. | 
| [24] |  
											  J. Zhong, W. Chen, L. Zhang, Calphad 60 ( 2018) 177-190. 
											 												 DOI URL  | 
										
| [25] | W.K. Hastings, Biometrika 57 ( 1970) 97-109. | 
| [26] | B. Jönsson, Z. Metallkd. 83 (1992) 349-355. | 
| [27] | N. Ta, L. Zhang, Y. Du, Coatings 8 ( 2018) 421. | 
| [28] | S. Yang, J. Zhong, M. Chen, L. Zhang, Coatings 9 ( 2019) 607. | 
| [29] | F. Xing, N. Ta, J. Zhong, Y. Zhong, L. Zhang, Solid State Ion. 341 (2019), 115018. | 
| [30] | J. Chen, J. Zhao, L. Zhang, X.G. Lu, L. Liu, Calphad 65 ( 2019) 316-325. | 
| [31] |  
											  J. Chen, L. Zhang, J. Zhong, W. Chen, Y. Du, J. Alloys Compd. 688 (2016) 320-328. 
											 												 DOI URL  | 
										
| [32] | C. Zhou, C. Guo, C. Li, Z. Du, Acta Mater. 666 (2018) 135-147. | 
| [33] |  
											  N. Dupin, I. Ansara, B. Sundman, Calphad 25 ( 2001) 279-298. 
											 												 DOI URL  | 
										
| [34] | L. Zhang, Y. Du, Q. Chen, I. Steinbach, B. Huang, Int. J. Mater. Res. 101 (2010) 1461-1475. | 
| [35] |  
											  M. Wei, L. Zhang, Sci. Rep. 8 (2018) 5071. 
											 												 URL PMID  | 
										
| [36] | Chujiro Matano, J. Appl. Phys. 8 (1933) 109-113. | 
| [37] | M.S.A. Karunaratne, P. Carter, R.C. Reed, Mater. Sci. Eng. A 281 ( 2000) 229-233. | 
| [38] | B. Jansson, Evaluation of Parameters in Thermochemical Models UsingDifferent Types of Experimental Data Simultaneously, TRITA-MAC 234, RoyalInst, Technol., Stockholm, 1984. | 
| [39] | A. Paul, Philos. Mag. 93 (2013) 2297-2315. | 
| [40] | J. Chen, L. Zhang, Calphad 60 ( 2018) 106-115. | 
| [41] | S. Wen, Y. Tang, J. Zhong, L. Zhang, Y. Du, F. Zheng, J. Mater. Res. 32 (2017) 2188-2201. | 
| [42] | J. Chen, L. Zhang, X.G. Lu, Metall. Mater. Trans. A 49 ( 2018) 2999-3010. | 
| [43] | Q. Li, W. Chen, J. Zhong, L. Zhang, Q. Chen, Z.K. Liu, Metals 8 ( 2017) 16. | 
| [44] |  
											  R. Wang, W. Chen, J. Zhong, L. Zhang, J. Mater. Sci. Technol. 34 (2018) 1791-1798. 
											 												 DOI URL  | 
										
| [45] | S. Chen, Q. Li, J. Zhong, F. Xing, L. Zhang, J. Alloys Compd. 791 (2019) 255-264. | 
| No related articles found! | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||