材料科学与技术 ›› 2017, Vol. 33 ›› Issue (12): 1610-1620.DOI: 10.1016/j.jmst.2016.12.001
收稿日期:
2016-06-22
修回日期:
2016-09-07
接受日期:
2016-09-09
出版日期:
2017-12-20
发布日期:
2018-01-30
Shao Chendongab, Lu Fengguiab*(), Wang Xiongfeiab, Ding Yumingc, Li Zhuguoab*(
)
Received:
2016-06-22
Revised:
2016-09-07
Accepted:
2016-09-09
Online:
2017-12-20
Published:
2018-01-30
Contact:
Lu Fenggui,Li Zhuguo
. [J]. 材料科学与技术, 2017, 33(12): 1610-1620.
Shao Chendong, Lu Fenggui, Wang Xiongfei, Ding Yuming, Li Zhuguo. Microstructure characterization and HCF fracture mode transition for modified 9Cr-1Mo dissimilarly welded joint at different elevated temperatures[J]. J. Mater. Sci. Technol., 2017, 33(12): 1610-1620.
Materials | C | Si | Mn | Cr | Mo | W | Ni | V | Nb | B | N | Co | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BM1 | 0.12 | 0.1 | 0.45 | 10.4 | 1.06 | 0.81 | 0.74 | 0.2 | 0.08 | - | 0.06 | - | Bal. |
BM2 | 0.13 | 0.05 | 0.4 | 9.3 | 1.5 | - | 0.15 | 0.2 | 0.05 | 0.01 | 0.02 | 1.0 | Bal. |
US-9 (filler) | 0.1 | <0.50 | <1.25 | 9.5 | 1.0 | - | <1.0 | 0.2 | 0.05 | - | - | - | Bal. |
Table 1 Chemical composition of BM1, BM2 and filler wire (wt%).
Materials | C | Si | Mn | Cr | Mo | W | Ni | V | Nb | B | N | Co | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BM1 | 0.12 | 0.1 | 0.45 | 10.4 | 1.06 | 0.81 | 0.74 | 0.2 | 0.08 | - | 0.06 | - | Bal. |
BM2 | 0.13 | 0.05 | 0.4 | 9.3 | 1.5 | - | 0.15 | 0.2 | 0.05 | 0.01 | 0.02 | 1.0 | Bal. |
US-9 (filler) | 0.1 | <0.50 | <1.25 | 9.5 | 1.0 | - | <1.0 | 0.2 | 0.05 | - | - | - | Bal. |
Temperature (°C) | 0.2% proof strength, Rp0.2 (MPa) | Tensile strength, Rm (MPa) | Elongation, A (%) | Reduction of area, Z (%) |
---|---|---|---|---|
RT | 640 | 772 | 16.7 | 66.8 |
500 | 502 | 566 | 16.1 | 73.6 |
538 | 461 | 508.5 | 14.8 | 76.5 |
566 | 433 | 480 | 17.4 | 83.3 |
Table 2 Mechanical properties of the modified 9Cr-1Mo dissimilarly welded joint.
Temperature (°C) | 0.2% proof strength, Rp0.2 (MPa) | Tensile strength, Rm (MPa) | Elongation, A (%) | Reduction of area, Z (%) |
---|---|---|---|---|
RT | 640 | 772 | 16.7 | 66.8 |
500 | 502 | 566 | 16.1 | 73.6 |
538 | 461 | 508.5 | 14.8 | 76.5 |
566 | 433 | 480 | 17.4 | 83.3 |
Test temperature | σf' (MPa) | b | Fatigue strength (MPa) at 108 cycles |
---|---|---|---|
RT | 429.4 | -0.01420 | 327 |
500 | 303.6 | -0.01352 | 234 |
538 | 375.3 | -0.02647 | 226 |
566 | 294.0 | -0.01772 | 210 |
Table 3 Fatigue parameters for the modified 9Cr-1Mo dissimilarly welded joint.
Test temperature | σf' (MPa) | b | Fatigue strength (MPa) at 108 cycles |
---|---|---|---|
RT | 429.4 | -0.01420 | 327 |
500 | 303.6 | -0.01352 | 234 |
538 | 375.3 | -0.02647 | 226 |
566 | 294.0 | -0.01772 | 210 |
Fig. 4. Different HCF failure locations regardless of temperature: (a) Failure location at the middle of WM (RT, σmax = 335 MPa, Nf = 4.13 × 107), (b) Failure location at fusion line of BM1 side (500 °C, σmax = 235 MPa, Nf = 1.24 × 107), (c) Failure location at the BM1-HAZ (538 °C, σmax = 250 MPa, Nf = 4.52 × 106), (d) Failure location at the BM2-HAZ (566 °C, σmax = 220 MPa, Nf = 3.39 × 106).
Fig. 7. Microstructure of the whole dissimilarly welded joint, HAZs and WM: (a) the overall microstructure of the modified 9Cr-1Mo dissimilarly welded joint, (b) the overall microstructure of BM1-HAZ, (c) the overall microstructure of BM2-HAZ, (d) the overall microstructure at the middle of WM revealing the multi-layer and double pass feature, (e) tempered martensite microstructure in the WM. Zones B, C and D marked with yellow rectangles in (a) reveal locations of (b), (c) and (d) in the joint respectively.
Fig. 8. Fractography of the fatigue specimens tested at RT: (a) surface shrinkage porosity induced failure at BM1-HAZ (σmax = 340 MPa, Nf = 2.74 × 105), (b) interior shrinkage porosity induced failure at BM2-HAZ (σmax = 340 MPa, Nf = 8.85 × 107), (c) interior enriched elements induced failure at BM2-HAZ (σmax = 320 MPa, Nf = 1.17 × 107), (d) interior inclusion induced failure at middle of WM (σmax = 370 MPa, Nf = 1.63 × 107).
Fig. 10. Fractography of the fatigue specimens tested at high temperatures with surface crack initiation: (a) surface inclusion induced failure at BM1-FL (500 °C, σmax = 235 MPa, Nf = 1.24 × 107), (b) magnified image of crack ignition of (a), (c) surface crack initiation induced failure at BM1-HAZ (566 °C, σmax = 240 MPa, Nf = 7.19 × 104), (d) surface crack initiation induced failure at BM2-HAZ (566 °C, σmax = 210 MPa, Nf = 1.68 × 106).
Fig. 11. Fractography of the fatigue specimens tested at high temperature with interior crack initiation: (a) interior inhomogeneous microstructure induced failure at BM2-HAZ (538 °C, σmax = 250 MPa, Nf = 8.66 × 105), (b) interior inhomogeneous microstructure induced failure at BM2-HAZ (538 °C, σmax = 260 MPa, Nf = 1.77 × 106), (c) interior inhomogeneous microstructure induced failure at BM2-HAZ (538 °C, σmax = 235 MPa, Nf = 2.85 × 107), (d) interior inhomogeneous microstructure induced failure at BM2-HAZ (500 °C, σmax = 235 MPa, Nf = 7.06 × 107).
Fig. 12. Proposed mechanism of fatigue crack initiation: (a) fatigue crack initiation from surface defect without fish-eye area, (b) fatigue crack initiation from interior defect with fish-eye area, (c) fatigue crack initiation due to intrusion and extrusion in surface grains, (d) subsurface non-defect fatigue crack origin with fish-eye area.
Fig. 14. δ-ferrite observed at different zones of BM1 side in a tested specimen without failure (566 °C, σmax = 200 MPa, N = 1.06 × 108): (a, b) δ-ferrite in the BM1 without cavity, (c, d) δ-ferrite in the BM1-FGZ without cavity, (e, f) δ-ferrite in the IC-HAZ with massive cavities at the phase boundary and inside the δ-ferrite phase.
|
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||