材料科学与技术 ›› 2017, Vol. 33 ›› Issue (12): 1531-1539.DOI: 10.1016/j.jmst.2017.09.012
收稿日期:
2016-12-14
修回日期:
2017-01-25
接受日期:
2017-01-28
出版日期:
2017-12-20
发布日期:
2018-01-30
Huang Zhenyiab, Jiang Yueshangab, Hou Alongab, Wang Pingabc, Shi Qibc, Hou Qingyuab*(), Liu Xianghuaa
Received:
2016-12-14
Revised:
2017-01-25
Accepted:
2017-01-28
Online:
2017-12-20
Published:
2018-01-30
Contact:
Hou Qingyu
. [J]. 材料科学与技术, 2017, 33(12): 1531-1539.
Huang Zhenyi, Jiang Yueshang, Hou Along, Wang Ping, Shi Qi, Hou Qingyu, Liu Xianghua. Rietveld refinement, microstructure and high-temperature oxidation characteristics of low-density high manganese steels[J]. J. Mater. Sci. Technol., 2017, 33(12): 1531-1539.
Steel | C | Mn | Al | Fe | Density |
---|---|---|---|---|---|
Mn28Al10 | 1.05 | 28.13 | 10.04 | Bal. | 6.76 |
Mn28Al8 | 1.04 | 27.87 | 8.26 | Bal. | 6.95 |
Mn20Al10 | 0.98 | 19.40 | 9.82 | Bal. | 6.77 |
Table 1 Composition of the forged steels (wt%) and their density (g/cm3).
Steel | C | Mn | Al | Fe | Density |
---|---|---|---|---|---|
Mn28Al10 | 1.05 | 28.13 | 10.04 | Bal. | 6.76 |
Mn28Al8 | 1.04 | 27.87 | 8.26 | Bal. | 6.95 |
Mn20Al10 | 0.98 | 19.40 | 9.82 | Bal. | 6.77 |
Fig. 2. XRD pattern for the forged Fe-Mn-Al-C steels with refined data obtained by Rietveld method. The experimental points are given as plus (×) and theoretical data are shown as solid line. There is a difference in curves at bottom of XRD patterns between theoretical and experimental data. The vertical lines represent the Bragg’s allowed peaks for γ(Fe, Mn), Fe3AlC0.5 (κ-carbide) and α(Fe, Mn) (from above), respectively: (a) Mn28Al10, (b) Mn28Al8 and (c) Mn20Al10.
Steel | Phases | Space group | Lattice parameters (nm) | Abundance (wt%) | ||
---|---|---|---|---|---|---|
a | b | c | ||||
Mn28Al10 | γ(Fe,Mn) | Fm$\bar3$m | 0.36836(8) | 92.85 | ||
Rwp = 3.27% | Fe3AlC0.5 | Pm$\bar3$m | 0.37123(8) | 5.28 | ||
S = 3.46 | α(Fe,Mn) | Im$\bar3$m | 0.29048(9) | 1.87 | ||
Mn28Al8 | γ(Fe,Mn) | Fm$\bar3$m | 0.36773(2) | 100 | ||
Rwp = 6.43% | ||||||
S = 3.41 | ||||||
Mn20Al10 | γ(Fe,Mn) | Fm$\bar3$m | 0.36844(5) | 81.98 | ||
Rwp = 8.64% | ||||||
S = 5.88 | α(Fe,Mn) | Im$\bar3$m | 0.29071(5) | 18.02 |
Table 2 Phase constitution, structural parameters, and phase abundance of the forged steels as refined by XRD Rietveld method.
Steel | Phases | Space group | Lattice parameters (nm) | Abundance (wt%) | ||
---|---|---|---|---|---|---|
a | b | c | ||||
Mn28Al10 | γ(Fe,Mn) | Fm$\bar3$m | 0.36836(8) | 92.85 | ||
Rwp = 3.27% | Fe3AlC0.5 | Pm$\bar3$m | 0.37123(8) | 5.28 | ||
S = 3.46 | α(Fe,Mn) | Im$\bar3$m | 0.29048(9) | 1.87 | ||
Mn28Al8 | γ(Fe,Mn) | Fm$\bar3$m | 0.36773(2) | 100 | ||
Rwp = 6.43% | ||||||
S = 3.41 | ||||||
Mn20Al10 | γ(Fe,Mn) | Fm$\bar3$m | 0.36844(5) | 81.98 | ||
Rwp = 8.64% | ||||||
S = 5.88 | α(Fe,Mn) | Im$\bar3$m | 0.29071(5) | 18.02 |
Steel | UTS (GPa) | TE (%) | Density (g/cm3) | UTS × TE (GPa %) | UTS/density (GPa g/cm3) |
---|---|---|---|---|---|
Mn28Al10 | 1.21 | 45.08 | 6.76 | 54.55 | 0.18 |
Mn28Al8 | 1.06 | 65.32 | 6.95 | 69.24 | 0.15 |
Mn20Al10 | 1.21 | 35.20 | 6.77 | 42.59 | 0.18 |
Table 3 Mechanical properties of the forged steels.
Steel | UTS (GPa) | TE (%) | Density (g/cm3) | UTS × TE (GPa %) | UTS/density (GPa g/cm3) |
---|---|---|---|---|---|
Mn28Al10 | 1.21 | 45.08 | 6.76 | 54.55 | 0.18 |
Mn28Al8 | 1.06 | 65.32 | 6.95 | 69.24 | 0.15 |
Mn20Al10 | 1.21 | 35.20 | 6.77 | 42.59 | 0.18 |
Steel | Rate constant (mg2/cm4/h) | |
---|---|---|
kpi | kpf | |
Mn28Al10 | 17.54 (5-10 h) | 32.50 (10-25 h) |
Mn28Al8 | 36.81 (5-10 h) | 457.17 (10-25 h) |
Mn20Al10 | 9.94 (5-20 h) | 284.51 (20-25 h) |
Table 4 Parabolic rates for the forged steels oxidized at 1323 K for 5-25 h.
Steel | Rate constant (mg2/cm4/h) | |
---|---|---|
kpi | kpf | |
Mn28Al10 | 17.54 (5-10 h) | 32.50 (10-25 h) |
Mn28Al8 | 36.81 (5-10 h) | 457.17 (10-25 h) |
Mn20Al10 | 9.94 (5-20 h) | 284.51 (20-25 h) |
Fig. 5. XRD pattern for the Fe-Mn-Al-C steels oxidized at 1323 K for 25 h with refined data obtained by Rietveld method. The experimental points are given as plus (×) and theoretical data are shown as solid line. There is a difference in curves at bottom of XRD patterns between theoretical and experimental data. The vertical lines represent the Bragg’s allowed peaks for Fe2MnO4 (Fd$\bar3$m), α-Fe2O3 (R$\bar3$c) and (Fe,Mn)2O3 (Ia$\bar3$) in Mn28Al10 (a), Fe2MnO4 (Fd$\bar3$m), Fe3O4 (Fd$\bar3$m), α-Fe2O3 (R$\bar3$c) and α-Al2O3 (R$\bar3$c) in Mn28Al10, and Fe2MnO4 (Fd$\bar3$m) and α-Fe2O3 (R$\bar3$c) in Mn20M10 (c) (from above), respectively.
Steel | Phases | Space group | Lattice parameters (nm) | Abundance (wt%) | ||
---|---|---|---|---|---|---|
a | b | c | ||||
Mn28Al10 | Fe2MnO4 | Fd$\bar3$m | 0.84777(10) | 77.79 | ||
Rwp = 5.29% | α-Fe2O3 | R$\bar3$c | 0.50247(9) | 1.37007(9) | 15.35 | |
S = 5.52 | FeMnO3 | Ia$\bar3$ | 0.94024(10) | 6.86 | ||
Mn28Al8 | Fe2MnO4 | Fd$\bar3$m | 0.85089(9) | 41.76 | ||
Rwp = 8.23% | Fe3O4 | Fd$\bar3$m | 0.84388(8) | 7.65 | ||
S = 2.72 | α-Fe2O3 | R$\bar3$c | 0.50297(8) | 1.37118(9) | 35.45 | |
α-Al2O3 | R$\bar3$c | 0.47932(10) | 1.30936(8) | 15.14 | ||
Mn20Al10 | Fe2MnO4 | Fd$\bar3$m | 0.84685(6) | 70.35 | ||
Rwp = 5.57% | ||||||
S = 2.02 | α-Fe2O3 | R$\bar3$c | 0.50281(7) | 1.37094(8) | 29.65 |
Table 5 Phase constitution, structural parameters, and phase abundance of the oxides in the detached scales of the steels oxidized at 1323 K for 25 h as refined by XRD Rietveld method.
Steel | Phases | Space group | Lattice parameters (nm) | Abundance (wt%) | ||
---|---|---|---|---|---|---|
a | b | c | ||||
Mn28Al10 | Fe2MnO4 | Fd$\bar3$m | 0.84777(10) | 77.79 | ||
Rwp = 5.29% | α-Fe2O3 | R$\bar3$c | 0.50247(9) | 1.37007(9) | 15.35 | |
S = 5.52 | FeMnO3 | Ia$\bar3$ | 0.94024(10) | 6.86 | ||
Mn28Al8 | Fe2MnO4 | Fd$\bar3$m | 0.85089(9) | 41.76 | ||
Rwp = 8.23% | Fe3O4 | Fd$\bar3$m | 0.84388(8) | 7.65 | ||
S = 2.72 | α-Fe2O3 | R$\bar3$c | 0.50297(8) | 1.37118(9) | 35.45 | |
α-Al2O3 | R$\bar3$c | 0.47932(10) | 1.30936(8) | 15.14 | ||
Mn20Al10 | Fe2MnO4 | Fd$\bar3$m | 0.84685(6) | 70.35 | ||
Rwp = 5.57% | ||||||
S = 2.02 | α-Fe2O3 | R$\bar3$c | 0.50281(7) | 1.37094(8) | 29.65 |
Fig. 6. XRD pattern for the Fe-Mn-Al-C steels oxidized at 1373 K for 25 h with refined data obtained by Rietveld method. The experimental points are given as plus (×) and theoretical data are shown as solid line. There is a difference in curves at bottom of XRD patterns between theoretical and experimental data. The vertical lines represent the Bragg’s allowed peaks for Fe2MnO4 (Fd$\bar3$m), Fe3O4 (Fd$\bar3$m), α-Fe2O3 (R$\bar3$c) and α-Al2O3 (R$\bar3$c) (from above), respectively: (a) Mn28Al10, (b) Mn28Al8 and (c) Mn20Al10.
Steel | Phases | Space group | Lattice parameters (nm) | Abundance (wt%) | ||
---|---|---|---|---|---|---|
a | b | c | ||||
Mn28Al10 | Fe2MnO4 | Fd$\bar3$m | 0.84895(8) | 56.21 | ||
Rwp = 4.35% | Fe3O4 | Fd$\bar3$m | 0.84362(7) | 6.01 | ||
S = 2.84 | α-Fe2O3 | R$\bar3$c | 0.50299(8) | 1.37084(9) | 22.49 | |
α-Al2O3 | R$\bar3$c | 0.47912(9) | 1.30847(9) | 15.29 | ||
Mn28Al8 | Fe2MnO4 | Fd$\bar3$m | 0.85101(7) | 47.61 | ||
Rwp = 8.15% | Fe3O4 | Fd$\bar3$m | 0.84320(8) | 10.23 | ||
S = 2.73 | α-Fe2O3 | R$\bar3$c | 0.50303(8) | 1.37148(9) | 24.47 | |
α-Al2O3 | R$\bar3$c | 0.47915(9) | 1.30803(9) | 17.69 | ||
Mn20Al10 | Fe2MnO4 | Fd$\bar3$m | 0.84711(9) | 40.43 | ||
Rwp = 7.97% | Fe3O4 | Fd$\bar3$m | 0.84211(7) | 5.53 | ||
S = 2.25 | α-Fe2O3 | R$\bar3$c | 0.50253(5) | 1.36999(9) | 37.80 | |
α-Al2O3 | R$\bar3$c | 0.47917(8) | 1.30707(9) | 16.24 |
Table 6 Phase constitution, structural parameters, and phase abundance of in the detached scales of the steels oxidized at 1373 K for 25 h as refined by XRD Rietveld method.
Steel | Phases | Space group | Lattice parameters (nm) | Abundance (wt%) | ||
---|---|---|---|---|---|---|
a | b | c | ||||
Mn28Al10 | Fe2MnO4 | Fd$\bar3$m | 0.84895(8) | 56.21 | ||
Rwp = 4.35% | Fe3O4 | Fd$\bar3$m | 0.84362(7) | 6.01 | ||
S = 2.84 | α-Fe2O3 | R$\bar3$c | 0.50299(8) | 1.37084(9) | 22.49 | |
α-Al2O3 | R$\bar3$c | 0.47912(9) | 1.30847(9) | 15.29 | ||
Mn28Al8 | Fe2MnO4 | Fd$\bar3$m | 0.85101(7) | 47.61 | ||
Rwp = 8.15% | Fe3O4 | Fd$\bar3$m | 0.84320(8) | 10.23 | ||
S = 2.73 | α-Fe2O3 | R$\bar3$c | 0.50303(8) | 1.37148(9) | 24.47 | |
α-Al2O3 | R$\bar3$c | 0.47915(9) | 1.30803(9) | 17.69 | ||
Mn20Al10 | Fe2MnO4 | Fd$\bar3$m | 0.84711(9) | 40.43 | ||
Rwp = 7.97% | Fe3O4 | Fd$\bar3$m | 0.84211(7) | 5.53 | ||
S = 2.25 | α-Fe2O3 | R$\bar3$c | 0.50253(5) | 1.36999(9) | 37.80 | |
α-Al2O3 | R$\bar3$c | 0.47917(8) | 1.30707(9) | 16.24 |
Fig. 7. Al2p3/2 and O1s XPS spectra of Al2O3 formed between the substrate and the detached scales formed in the steels oxidized at 1323 K for 25 h: (a) Al2p3/2 spectra, (b) O1s spectra.
Fig. 8. Al2p3/2 and O1s XPS spectra of Al2O3 formed between the substrate and the detached scales formed in the steels oxidized at 1373 K for 25 h: (a) Al2p3/2 spectra, (b) O1s spectra.
|
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||