Integration of machine learning with phase field method to model the electromigration induced Cu6Sn5 IMC growth at anode side Cu/Sn interface
Anil Kunwar, Yuri Amorim Coutinho, Johan Hektor, Haitao Ma, Nele Moelans
Table 3 Values of the neural network optimized effective charge numbers at different values of current density. The predicted and experimental growth rate constants are denoted as kem,pred and kem,expt respectively.
j (A/m2) ZCufcc ZSnfcc ZCuimc ZSnimc ZCuliq ZSnliq kem,pred
(μm/min)
kem,expt
(μm/min)
1 × 106 2.1 2.15 2.1 2.25 2.02 2.03 0.11 0.098
2 × 106 3.7 3.8 8.7 12.2 2.8 2.9 0.194 0.194
3 × 106 4.3 4.9 15.0 23.0 3.3 3.4 0.3 0.294
4 × 106 5.4 5.9 26.0 36.0 3.85 4.2 0.398 0.392
5 × 106 6.6 6.9 30.0 39.0 4.3 4.7 0.47 0.49
6 × 106 8.0 8.5 36.0 46.0 4.5 4.9 0.57 0.588
7 × 106 9.75 10 42.0 52.0 5.1 5.2 0.677 0.686
8 × 106 9.9 10.1 48.0 56.0 5.2 5.2 0.791 0.784
9 × 106 10.0 10.25 52.0 62.0 5.2 5.3 0.897 0.882
10 × 106 11.5 11.75 58.0 68.0 5.8 5.9 1.0 0.98