Modes of grain growth and mechanism of dislocation reaction under applied biaxial strain: Atomistic and continuum modeling
Ying-Jun Gaoa,*(), Qian-Qian Denga, Zhe-yuan Liua, Zong-Ji Huanga, Yi-Xuan Lia, Zhi-Rong Luoa,b

.

Fig. 1.. Strain-driven small angle STGB migration and the GB splitting: (a) nanostructured bulk materials, (b) The magnified view of red box in Fig.(a), the red dashed line AB, CD, EF is the position of the initial GB. The slash line region indicates the region of the grain growth. (c) Simplified plot of rectangle ABFE regional enlargement of the GB [64] splitting and migration motion in the Fig.(b). It can be seen that the initial CD grain boundary dislocations are alternately arranged, in which there are two sets of dislocations, B2 and B3, or B5 and B6, and the GB splitting occurs under the biaxial strain. The “T” symbol in the figure indicates a dislocation Bi (where the description of Bi can be seen from the Appendix A), and the red dashed line indicates the initial position of the GB. The red dashed “T” indicates the dislocation arrangement of the initial GB. There is an angle between the Burgers vector of the dislocation and the GB direction. Yellow and green areas indicate the orientation of the grains. The direction of the exerted stress is shown in Fig. (c).